Preview

Vestnik of M. Kozybayev North Kazakhstan University

Advanced search

RESPONSE OF PULMONARY HEMODYNAMICS TO ORTHOSTATIC SAMPLES IN HIGH ALTITUDE CONDITIONS

https://doi.org/10.54596/2309-6977-2022-1-7-17

Abstract

In experiments on male Wistar rats by means of transbronchial electroplethysmography and catheterization of the pulmonary artery, changes in hemodynamics of the small circle were traced in response to a change in body position relative to the gravity vector in male Wistar rats when adapting to high altitude conditions for 60 and 150 days. Served as control similar experiments on the plain. It is shown that the gravitational redistribution of blood filling and blood flow in the lungs in the mountains is less pronounced than in the plain. This is due to an increase in the rigidity of the arterial vascular bed of the lungs and, accordingly, an increase in the reactive component of hydraulic resistance. The pressure response in the pulmonary artery at the moment of a change in body position was well expressed both on the plain and in the mountains. On the plains, the transition to the passive orthostatic position was accompanied by a decrease in both systolic and the percentage of, to a large extent, diastolic pressure, and the transition to the passive antiorthostatic position was accompanied by an increase in pressure in the pulmonary artery with approximately the same proportions of changes in systolic and diastolic. The results obtained are generally consistent with the concept of regional irregularity of blood circulation in the lungs, according to which the values of the gradient in blood filling and blood flow in the lungs are determined by the action of gravity and exists at any position of the body in space, although in a horizontal position (lying on the back) and on a plain, and in the mountains we did not find reliable gravitational differences in rats either in blood filling in blood flow.

About the Authors

A. Shandaulov
Astana medical university
Kazakhstan

Nur-Sultan



K. Khamchiyev
Astana medical university
Kazakhstan

Nur-Sultan



Zh. Rakhimzhanova
Astana medical university
Kazakhstan

Nur-Sultan



A. Zhashkeyeva
Astana medical university
Kazakhstan

Nur-Sultan



K. Sembekova
Astana medical university
Kazakhstan

Nur-Sultan



S. Bazarbayeva
Astana medical university
Kazakhstan

Nur-Sultan



References

1. A.Kh. Shandaulov, K.M. Khamchiyev, A.A. Ostanin, S.S. Ibraeva, K.M. Hasenova 2020. Influence of high-altitude hypoxia on the hemodynamics of the small circle of blood circulation and indicators of red blood of rats. Sys Rev Pharm 2020; 11 (2): 284-288. DOI:10.5530/srp.2020.2.44.

2. David, P., Terrien, J. & Petitjean, M. Postural- and respiratory-related activities of abdominal muscles during post-exercise hyperventilation. Gait & posture 41, 899–904, https://doi.org/10.1016/j.gaitpost.2015.03.012 (2015).

3. Degache, F. et al. Alterations in postural control during the world’s most challenging mountain ultra-marathon. PloS one 9, e84554, https://doi.org/10.1371/journal.pone.0084554 (2014). Scientific Reports | (2020) 10:483 https://doi.org/10.1038/s41598-019-57166-48. www.nature.com/scientificreports/ www.nature.com/scientificreports

4. Drum, S.N. et al. Acute effects of walking at moderate normobaric hypoxia on gait and balance performance in healthy community dwelling seniors: A randomized controlled crossover study. Arch Gerontol Geriatr 67, 74–79, https://doi.org/10.1016/j.archger.2016.06.022 (2016).

5. Hromina S.I., Batyrshina N.A., Batyrshin R.R. (2021). Sravnitel'nyi analiz rezul'tatov ortostaticheskoi proby u studentov v period pandemii covid-19. Sovremennye naukoemkie tekhnologii, 3, 230-234 [in Russian]. https://doi.org/10.17513/snt.38562

6. Hussain A., Suleiman M.S., George S.J., Loubani M., Morice A. 2017. Hypoxic pulmonary vasoconstriction in humans: tale or myth. Open Cardiovasc. Med. J.,11(1), 1-13. https://doi.org/10.2174/1874192401711010001

7. Kotelnikov V.N., Osipov I.O., Zayats Yu.V., Gelzer B.I. (2017). Assessment of autonomic regulation of the heart in acute exogenous normoboric hypoxia of varying severity in the experiment. Bull. an expert. biol. and honey, 1, 541-547.

8. Lesova E.M., Samoilov V.O., Filippova E.B., Savokina O.V. (2015). Individual'nye razlichiya pokazatelej gemodinamiki pri sochetanii gipoksicheskoi i ortostaticheskoj nagruzok. Vestnik rossijskoi voenno-medicinskoj akademii, 1 (49), 157-163 [in Russian].

9. Mazhbich B.I., Kul'minyh L.I. (1986). Kateterizaciya legochnoj arterii i trasbronhial'naya elektropletizmografiya u krys.Transbronhial'naya elektropletizmografiya legkih. Novosibirsk, 20-32 [in Russian].

10. Mifflin S., Cunningham J.T., Toney G.M. (2015). Neurogenic mechanisms underlying the rapid onset of sympathetic responses to intermittent hypoxia. J. Appl. Physiol, 119,1441-1448. https://doi.org/10.1152/japplphysiol.00198.2015

11. Paillard, T. Efects of general and local fatigue on postural control: A review. Neuroscience & Biobehavioral Reviews 36, 162–176, https://doi.org/10.1016/j.neubiorev.2011.05.009 (2012).

12. Ribon, A. et al. Exposure to hypobaric hypoxia results in higher oxidative stress compared to normobaric hypoxia. Respiratory physiology & neurobiology 223, 23–27, https://doi.org/10.1016/j.resp.2015.12.008 (2016).

13. Sadowska, D. & Krzepota, J. Infuence of Posturographic Protocol on Postural Stability Sways During Bipedal Stance Afer Ankle Muscle Fatigue. Percept Mot Skills 123, 232–243, https://doi.org/10.1177/0031512516660698 (2016).

14. Saugy, J.J. et al. Cycling Time Trial Is More Altered in Hypobaric than Normobaric Hypoxia. Medicine and science in sports and exercise 48, 680–688, https://doi.org/10.1249/mss.0000000000000810 (2016).

15. Stadelmann, K. et al. Impaired Postural Control in Healthy Men at Moderate Altitude (1630 M and 2590 M): Data from a Randomized Trial. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0116695 (2015). Thorpe, R.B. (2017). Chronic hypoxia attenuates the vasodilator efficacy of protein kinase G in fetal and adult ovine cerebral arteries. Am J Physiol Heart Circ Physiol 313, 1, 207-219. https://doi.org/10.1152/ajpheart.00480.2016.

16. A.Kh. Shandaulov, K.M. Khamchiyev, A.A. Ostanin, S.S. Ibraeva, K.M. Hasenova 2020. Influence of high-altitude hypoxia on the hemodynamics of the small circle of blood circulation and indicators of red blood of rats. Sys Rev Pharm 2020; 11 (2): 284-288. DOI:10.5530/srp.2020.2.44.

17. David, P., Terrien, J. & Petitjean, M. Postural- and respiratory-related activities of abdominal muscles during post-exercise hyperventilation. Gait & posture 41, 899–904, https://doi.org/10.1016/j.gaitpost.2015.03.012 (2015).

18. Degache, F. et al. Alterations in postural control during the world’s most challenging mountain ultra-marathon. PloS one 9, e84554, https://doi.org/10.1371/journal.pone.0084554 (2014). Scientific Reports | (2020) 10:483 https://doi.org/10.1038/s41598-019-57166-48. www.nature.com/scientificreports/ www.nature.com/scientificreports

19. Drum, S.N. et al. Acute effects of walking at moderate normobaric hypoxia on gait and balance performance in healthy community dwelling seniors: A randomized controlled crossover study. Arch Gerontol Geriatr 67, 74–79, https://doi.org/10.1016/j.archger.2016.06.022 (2016).

20. Hromina S.I., Batyrshina N.A., Batyrshin R.R. (2021). Sravnitel'nyi analiz rezul'tatov ortostaticheskoi proby u studentov v period pandemii covid-19. Sovremennye naukoemkie tekhnologii, 3, 230-234 [in Russian]. https://doi.org/10.17513/snt.38562

21. Hussain A., Suleiman M.S., George S.J., Loubani M., Morice A. 2017. Hypoxic pulmonary vasoconstriction in humans: tale or myth. Open Cardiovasc. Med. J., 11(1), 1-13. https://doi.org/10.2174/1874192401711010001

22. Kotelnikov V.N., Osipov I.O., Zayats Yu.V., Gelzer B.I. (2017). Assessment of autonomic regulation of the heart in acute exogenous normoboric hypoxia of varying severity in the experiment. Bull. an expert. biol. and honey, 1, 541-547.

23. Lesova E.M., Samoilov V.O., Filippova E.B., Savokina O.V. (2015). Individual'nye razlichiya pokazatelej gemodinamiki pri sochetanii gipoksicheskoi i ortostaticheskoj nagruzok. Vestnik rossijskoi voenno-medicinskoj akademii, 1 (49), 157-163 [in Russian].

24. Mazhbich B.I., Kul'minyh L.I. (1986). Kateterizaciya legochnoj arterii i trasbronhial'naya elektropletizmografiya u krys.Transbronhial'naya elektropletizmografiya legkih. Novosibirsk, 20-32 [in Russian].

25. Mifflin S., Cunningham J.T., Toney G.M. (2015). Neurogenic mechanisms underlying the rapid onset of sympathetic responses to intermittent hypoxia. J. Appl. Physiol, 119,1441-1448. https://doi.org/10.1152/japplphysiol.00198.2015

26. Paillard, T. Efects of general and local fatigue on postural control: A review. Neuroscience & Biobehavioral Reviews 36, 162–176, https://doi.org/10.1016/j.neubiorev.2011.05.009 (2012).

27. Ribon, A. et al. Exposure to hypobaric hypoxia results in higher oxidative stress compared to normobaric hypoxia. Respiratory physiology & neurobiology 223, 23–27, https://doi.org/10.1016/j.resp.2015.12.008 (2016).

28. Sadowska, D. & Krzepota, J. Infuence of Posturographic Protocol on Postural Stability Sways During Bipedal Stance Afer Ankle Muscle Fatigue. Percept Mot Skills 123, 232–243, https://doi.org/10.1177/0031512516660698 (2016).

29. Saugy, J.J. et al. Cycling Time Trial Is More Altered in Hypobaric than Normobaric Hypoxia. Medicine and science in sports and exercise 48, 680–688, https://doi.org/10.1249/mss.0000000000000810 (2016).

30. Stadelmann, K. et al. Impaired Postural Control in Healthy Men at Moderate Altitude (1630 M and 2590 M): Data from a Randomized Trial. PLoS ONE 10, https://doi.org/10.1371/journal.pone.0116695 (2015).

31. Thorpe, R.B. (2017). Chronic hypoxia attenuates the vasodilator efficacy of protein kinase G in fetal and adult ovine cerebral arteries. Am J Physiol Heart Circ Physiol 313, 1, 207-219. https://doi.org/10.1152/ajpheart.00480.2016

32. Tuleta I., Franca C., Wenzel D., Fleischmann B., Nickenig G., Werner N., Skowasch D. 2015. Intermittent hypoxia impairs endothelial function in early preatherosclerosis. Adv. Exp. Med. Biol, 858, 1-7. https://doi.org/10.1371/journal.pone.0193397

33. Vaillancourt M., Chia P., Sarji S., Nguyen J., Hoftman N., Ruffenach G., Eghbali M., Mahajan A., Umar S. 2017. Autonomic nervous system involvement in pulmonary arterial hypertension. Respir. Res.,18 (1), 201-216. https://doi.org/10.1186/s12931-017-0679-6

34. Хромина С.И., Батыршина Н.А., Батыршин Р.Р. 2021. Сравнительный анализ результатов ортостатической пробы у студентов в период пандемии covid-19. Современные наукоемкие технологии, 3, 230-234. https://doi.org/10.17513/snt.38562


Review

For citations:


Shandaulov A., Khamchiyev K., Rakhimzhanova Zh., Zhashkeyeva A., Sembekova K., Bazarbayeva S. RESPONSE OF PULMONARY HEMODYNAMICS TO ORTHOSTATIC SAMPLES IN HIGH ALTITUDE CONDITIONS. Vestnik of M. Kozybayev North Kazakhstan University. 2022;(1 (53)):7-17. (In Kazakh) https://doi.org/10.54596/2309-6977-2022-1-7-17

Views: 242


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2958-003X (Print)
ISSN 2958-0048 (Online)