Preview

Bulletin of Manash Kozybayev North Kazakhstan University

Advanced search

Modern approaches for fake news classification

https://doi.org/10.54596/2958-0048-2025-4-195-204

Abstract

This study addresses the problem of classification to determine whether a text is authentic or genuine. It uses state-of-the-art deep learning architectures in natural language processing (NLP), the Bert, Albert and GPT-2 models. Using these advanced models, the study aims to develop accurate and robust classification approaches to effectively distinguish between fake and real news. The test result showed that the proposed method has the potential to be used in distinguishing news that does not contain truth from those that do.

About the Author

A. B. Bilyalova
Kazakh-British Technical University JSC
Kazakhstan

Corresponding author, Master of Social Sciences (2016, L.N. Gumilyov Eurasian National University, Astana), “Kazakh-British Technical University” JSC, School of Information Technologies and Engineering.

Almaty



References

1. Saadi A., Enhancing Fake News Detection with Transformer Models and Summarization // Engineering, Technology & Applied Science Research. - 2025. - Vol.15. - No.3. - P.23253-23259.

2. Raza N., Abdulkadir S.J., Abid Y.A., Enhancing fake news detection with transformer-based deep learning: A multidisciplinary approach // Plus One. - 2025. - Vol.20. - No.9.

3. Balmas M. When fake news becomes real: Combined exposure to multiple news sources and political attitudes of inefficacy, alienation, and cynicism // Communication Research. - 2014. - Vol.41. - P.430-454.

4. Nasir J.A., Khan O.S., Varlamis I. Fake news detection: A hybrid CNN–RNN based deep learning approach // International Journal of Information Management Data Insights. - 2021. - Vol.1.

5. Xu K., Wang F., Wang H., Yang B. Detecting fake news over online social media via domain reputations and content understanding // Tsinghua Science and Technology. - 2020. - Vol.25. - P.20-27.

6. Ligthart A., Catal C., Tekinerdogan B. Analyzing the effectiveness of semi-supervised learning approaches for opinion spam classification // Applied Soft Computing. - 2021. - Vol.101.

7. Li J., Lei M. A brief survey for fake news detection via deep learning models // Elsevier. - 2022. - Vol.214. - P.1339-1344.

8. Gupta M., Dennehy D., Parra C.M., Mäntymäki M., Dwivedi Y.K. Fake news believability: The effects of political beliefs and espoused cultural values // Information and Management. - 2022. - Vol.60 - No.103745.

9. Goldani M.H., Momtazi S., Safabakhsh R. Detecting fake news with capsule neural networks // Applied Soft Computing. - 2021. - Vol.101. - No.106991.

10. Meel P., Vishwakarma D.K. Fake news, rumor, information pollution in social media and web: A contemporary survey of state-of-the-arts, challenges and opportunities // Expert Systems with Applications. - 2020. - Vol.153. - No.112986.

11. Kuntur S., Wróblewska A., Paprzycki M., Ganzha M., Under the Influence: A Survey of Large Language Models in Fake News Detection // IEEE Transactions on Artificial Intelligence. - 2025. - Vol.6. - P.458-476.

12. Su J., Cardie C., Nakov P. Adapting Fake News Detection to the Era of Large Language Models // Findings of the Association for Computational Linguistics: NAACL. - 2024. - P.1473-1490.

13. Hu B., Sheng Q., Cao J., Shi Y., Li Y., Wang D., Qi P., Bad Actor, Good Advisor: Exploring the Role of Large Language Models in Fake News Detection // AAAI Technical Track on AI for Social Impact Track. - 2024. - Vol.38. - No.20.

14. Devlin J., Chang M.-W., Lee K., Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding // North American Chapter of the Association for Computational Linguistics. - 2019. - Vol.45.

15. Sanh V., Debut L., Chaumond J., Wolf T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter // Computation and Language [Electronic resource]. - 2019. - Available at: https://arxiv.org/abs/1910.01108 (accessed 19.11.2025).

16. Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O., Lewis M., Zettlemoyer L., Stoyanov V. RoBERTa: A robustly optimized BERT pretraining approach // Computation and Language. [Electronic resource]. - 2019. - Available at: https://arxiv.org/abs/1907.11692 (accessed 19.11.2025)


Review

For citations:


Bilyalova A.B. Modern approaches for fake news classification. Bulletin of Manash Kozybayev North Kazakhstan University. 2025;(4 (68)):195-204. https://doi.org/10.54596/2958-0048-2025-4-195-204

Views: 70

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2958-003X (Print)
ISSN 2958-0048 (Online)