Preview

Bulletin of Manash Kozybayev North Kazakhstan University

Advanced search

Optimising SDN throughput via flow-table management: a comparative study and future research outlook

https://doi.org/10.54596/2958-0048-2025-4-166-181

Abstract

Software-Defined Networking (SDN) has transformed how networks are managed by separating control from data plane, making them more flexible and programmable However, throughput performance remains constrained by controller latency and the limited size of ternary content-addressable memory (TCAM) in switches. To tackle this, Flow-Table Reduction Schemes (FTRS) offer a simple, software-driven fix. In this paper, we explore how SDN throughput optimization has evolved, compare popular controllers, and show where FTRS fits in. We share real-world results from implementing FTRS on the Ryu controller, discuss why these matters for cost and sustainability, and outline future directions like using machine learning and multi-controller setups for smarter, faster networks

About the Authors

Azizol Bin Abdullah
https://profile.upm.edu.my/azizol
Universiti Putra Malaysia
Malaysia

Corresponding Author, Associate Professor, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia.

Serdang



Md Arafat Al Mamun
Universiti Putra Malaysia
Malaysia

Student, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia.

Serdang



Ahmad Alauddin Ariffin
Universiti Putra Malaysia
Malaysia

Lecturer, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia.

Serdang



Lili Nurliyana Binti Abdullah
Universiti Putra Malaysia
Malaysia

Associate Professor, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia.

Serdang



Mohd Noor Bin Derahman
Universiti Putra Malaysia
Malaysia

Lecturer, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia.

Serdang



References

1. Alizadeh, M., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K., Fingerhut, A., Lam, V. T., Matus, F., Pan, R., Yadav, N., & Varghese, G. (2014). CONGA: Distributed congestion-aware load balancing for datacenters. Proceedings of ACM SIGCOMM, 503–514.

2. Benson, T., Akella, A., & Maltz, D. (2010). Network traffic characteristics of datacenters in the wild. Proceedings of the 10th ACM Internet Measurement Conference (IMC’10), 267–280.

3. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O'Connor, B., Radoslavov, P., Snow, W., & Parulkar, G. (2014). ONOS: Towards an open, distributed SDN operating system. Proceedings of the 3rd Workshop on Hot Topics in Software Defined Networking (HotSDN), 1–6.

4. Chen, H., Guo, Y., Wu, Z., Liu, Y., & Hu, J. (2021). Entropy-aware wildcard compression for flow-table management. IEEE Transactions on Network and Service Management, 18(4), 3904–3916.

5. Curtis, A. R., Mogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., & Banerjee, S. (2011). DevoFlow: Scaling flow management for high-performance networks. ACM SIGCOMM Computer Communication Review, 41(4), 254–265.

6. Fernández, M., Frangoudis, P., Koutsiamanis, R. A., Dilaveroglu, S., & Tomkos, I. (2018). Performance comparison of open-source SDN controllers. Computer Communications, 128, 36–47.

7. Gao, Z., Lu, C., Zhou, H., & Lei, W. (2022). Aggregated flow-table techniques for scalable SDN. Computer Networks, 210, 108940.

8. Ghobadi, M., Sivaraman, V., Mahimkar, A., Boppana, R., & Alizadeh, M. (2020). Characterizing and optimizing distributed SDN controller coordination. IEEE Transactions on Network and Service Management, 17(3), 1644–1656.

9. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., & Shenker, S. (2008). NOX: Towards an operating system for networks. ACM SIGCOMM Computer Communication Review, 38(3), 105–110.

10. He, Q., Xia, S., Sun, X., & Zhang, X. (2021). Latency-aware flow scheduling in software-defined networks. IEEE Transactions on Network and Service Management, 18(2), 1339–1353.

11. Hu, Y., Wu, J., Yang, W., & Zhang, Y. (2020). Hardware support for efficient SDN rule offloading. IEEE/ACM Transactions on Networking, 28(2), 719–733.

12. Kang, J., Li, Y., Zhang, H., & Zheng, Y. (2021). Lightweight SDN controller architecture for scalable network management. Future Generation Computer Systems, 116, 222–233.

13. Kim, H., & Feamster, N. (2013). Improving network management with SDN. IEEE Communications Magazine, 51(2), 114–119.

14. Kobayashi, M., Muraoka, Y., Shirose, Y., & Yamaguchi, N. (2014). OpenFlow channel latency issues in large-scale deployments. IEEE Communications Magazine, 52(2), 86–92.

15. Kreutz, D., Ramos, F. M. V., & Veríssimo, P. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14–76.

16. Leng, J., Liu, X., & Li, F. (2017). Flow-table reduction in SDN. Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI’17), 1–13.

17. Li, J., Zhao, W., Wang, Y., & Li, Q. (2021). Lightweight machine learning for real-time SDN control. Journal of Network and Computer Applications, 194, 103224.

18. Liu, H., Hu, Y., & Wang, H. (2020). Adaptive flow classification for hybrid SDN traffic engineering. IEEE Access, 8, 198544–198554.

19. McCauley, M., Smith, D., Miller, E., & Timm, J. (2013). POX: Python-based SDN controller for rapid prototyping. Open Networking Summit (ONS), 1–6.

20. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., & Turner, J. (2008). OpenFlow: Enabling innovation in campus networks. ACM SIGCOMM Computer Communication Review, 38(2), 69–74.

21. Medved, J., Varga, R., Gondzio, J., & Zimalyaev, N. (2014). OpenDaylight: Towards a model-driven SDN controller architecture. IEEE/IFIP Network Operations and Management Symposium (NOMS), 1–6.

22. Monsanto, C., Reich, J., Foster, N., Walker, D., & Zeng, H. (2013). Composing software-defined networks. Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI’13), 1–13.

23. Qin, X., Huang, Y., Liu, P., Jiang, S., Ma, S., & Li, Z. (2023). Flow optimization for 5G edge SDN networks with TCAM limitations. IEEE Communications Surveys & Tutorials, 25(2), 901–924.

24. Shalimov, A., Petrov, I., Yegorov, I., Moiseenko, I., & Khakupov, R. (2013). Ryu SDN framework: Architecture and performance evaluation. ACM Symposium on SDN Research (SOSR), 1–6.

25. Sheikh, M., Abdullah, N. A., Hameed, S., & Wan, K. H. (2024). Comparative evaluation of open-source SDN controllers. Journal of Network and Systems Management, 32(1), 95–112.

26. Singh, A., Ong, J., Agarwal, A., Anderson, G., Armistead, A., Bannon, R., Boving, S., Desai, G., Felderman, B., & Meloy, S. (2015). Jupiter rising: A decade of datacenter network innovation. Proceedings of ACM SIGCOMM, 45(4), 183–197.

27. Tootoonchian, A., Ganjali, Y., Sherwani, J., & Firooz, M. (2012). On controller performance in software-defined networks. Proceedings of the 2nd USENIX Workshop on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services (Hot-ICE), 1–6.

28. Trent, L. (2023). Memory efficiency of SDN controllers. Future Generation Computer Systems, 141, 356–367.

29. Tsai, Y., Huang, C., & Chang, Y. (2022). Transformer-based prediction for network traffic. IEEE Access, 10, 93465–93477.

30. Wang, X., Zhao, D., Liu, J., & Xu, Y. (2022). RL-Flow: Reinforcement learning-based flow rule optimisation in SDN. IEEE Transactions on Network and Service Management, 19(1), 91–102.

31. Wang, Y., Chen, X., Wu, Y., & Zhang, Z. (2020). Hierarchical flow aggregation for SDN. Computer Networks, 176, 107290.

32. Yang, X., Li, P., Zhao, J., & Wang, L. (2022). Dynamic flow aggregation based on field correlation in SDN data planes. IEEE Access, 10, 12498–12509.

33. Yeganeh, S. H., Tootoonchian, A., Ganjali, Y., & Sherwani, J. (2013). Kandoo: A framework for efficient and scalable offloading in SDN controllers. Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN), 19–24.

34. Zahavi, E., & Zilberman, N. (2021). TCAM scaling challenges in modern networks. IEEE Micro, 41(2), 14–24.

35. Zhang, C., Wang, Y., Liu, X., & Chen, H. (2021). Predictive control-plane scheduling for SDN using machine learning. Computer Networks, 197, 108283.

36. Zhao, Y., Wu, Z., Wang, X., & Peng, Q. (2020). Deep reinforcement learning for intelligent SDN traffic control. IEEE Access, 8, 182010–182021.


Review

For citations:


Abdullah A.B., Mamun M.A., Ariffin A.A., Abdullah L.B., Derahman M.B. Optimising SDN throughput via flow-table management: a comparative study and future research outlook. Bulletin of Manash Kozybayev North Kazakhstan University. 2025;(4 (68)):166-181. https://doi.org/10.54596/2958-0048-2025-4-166-181

Views: 27

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2958-003X (Print)
ISSN 2958-0048 (Online)