Preview

Vestnik of M. Kozybayev North Kazakhstan University

Advanced search

Reference-grade genomes as a tool for conserving Kazakhstan’s national pride species: the cases of the Caspian seal and Greig’s tulip

https://doi.org/10.54596/2958-0048-2025-3-26-33

Abstract

This article presents the potential of third-generation sequencing (TGS) technologies to support biodiversity conservation efforts in Kazakhstan. We focus on two emblematic species - Pusa caspica (Caspian seal) and Tulipa greigii - that are both under conservation threat and lack comprehensive genomic resources. This mini-review highlights the transformative role of third-generation sequencing (TGS) in biodiversity conservation, using Kazakhstan as a case study. We do not aim to systematically compare sequencing technologies or exhaustively catalog all available genomic data. Rather, we discuss how high quality gapless reference genomes produced using TGS platforms such as PacBio HiFi and Oxford Nanopore represent an effective tool for species conservation efforts providing valuable information for the assessment of population genomic health, and for the identification of genes linked to adaptation and disease resistance. Finally, we suggest expanding this approach to include additional species of national importance, such as the saiga antelope, the Tazy and Tobet dogs, and the pink flamingo, as part of a national genomic biodiversity initiative.

About the Authors

S. Mussurova
Manash Kozybayev North Kazakhstan University NPLC
Kazakhstan

Saule Mussurova, Scientific Coordinator at Center of Agrocompetence, 

Petropavlovsk



A. Zuccolo
Manash Kozybayev North Kazakhstan University NPLC; Scuola Superiore Sant’Anna
Kazakhstan

Andrea Zuccolo, Professor, Petropavlovsk;

Pisa



R.A. Wing
King Abdullah University of Science and Technology (KAUST); University of Arizona
United States

Rod Anthony Wing - professor at KAUST, Thuwal, Saudi Arabia;

Director of Arizona Genomics Institute, Tucson



References

1. Almerekova, S. et al. (2024) ‘Comparative analysis of plastome sequences of seven tulipa L. (Liliaceae Juss.) species from section Kolpakowskianae RAAMSD. Ex Zonn and VELDK. ’, International Journal o f Molecular Sciences, 25(14), p. 7874. doi:10.3390/ijms25147874.

2. Almerekova, S., Yermagambetova, M., Ivashchenko, A., Abugalieva, S., & Turuspekov, Y. (2024). Assessment of Complete Plastid Genome Sequences of Tulipa alberti Regel and Tulipa greigii Regel Species from Kazakhstan. Genes, 15(11), 1447. https://doi.org/10.3390/genes151n447

3. Caspian seal genome: Joint research between Caier and Kaust (2025) Главная - ЦАИЭИ. Available at:https://asianecology.kz/news_eng/tpost/nx2bigjpz1-caspian-seal-genome-joint-research-betwe (Accessed: 14 May 2025).

4. Cui, T. et al. (2023) ‘Chromosome-level genome assembly and population genomic analysis provide novel insights into the immunity and evolution of Sogatella furcifera’, Genomics, 115(6), p. 110729. doi:10.1016/j.ygeno.2023.110729.

5. Dussex, N., van derValk, T., Morales, H.E., Wheat, C.W., D^ez-del-Molmo, D. & Allentoft, M.E., 2021. Population genomics of the critically endangered kakapo. Cell Genomics, 1(1), p.100002. DOI: 10.1016/j.xgen.2021.100002

6. Ferrette, B.L. et al. (2023) ‘Seascape genomics and phylogeography of the sailfish (istiophorus platypterus) ’, Genome Biology and Evolution, 15(4). doi:10.1093/gbe/evad042.

7. Formenti, G. et al. (2022) ‘The era of reference genomes in conservation genomics’, Trends in Ecology & Evolution, 37(3), pp. 197-202. doi:10.1016/j.tree.2021.11.008.

8. Gadzhiev, A. et al. (2024) ‘Pinnipeds and avian influenza: A global timeline and review of research on the impact of highly pathogenic avian influenza on pinniped populations with particular reference to the endangered Caspian seal (Pusa CASPICA)’, Frontiers in Cellular and Infection Microbiology, 14. doi:10.3389/fcimb.2024.1325977.

9. Gomes-dos-Santos, Andre, Elsa Froufe, Viatcheslav V. Rozhnov, Ivan Bolotov, Ilya G. Meschersky, Sergey I. Meschersky, Maria A. Solovyeva, Fedor V. Klimov, L. Filipe C. Castro, and Manuel Lopes-Lima. 2025. “The Complete Genome Sequence of the Caspian Seal Pusa Caspica (Gmelin, 1788).” Biodiversity Genomes, March. https://doi.org/10.56179/001c.133591.

10. Hogg, C.J., Ottewell, K., Latch, P., Rossetto, M., Biggs, J., Gilbert, A., Richmond, S. & Belov, K., 2022. Threatened Species Initiative: Empowering conservation action using genomic resources. Proceedings o f the National Academy o f Sciences o f the United States o f America, 119(4), e2115643118. https://doi.org/10.1073/pnas.2115643118

11. Huddart, J.E.A., Crawford, A.J., Luna-Tapia, A.L., Restrepo, S., & Di Palma, F. (2022). EBP-Colombia and the bioeconomy: Genomics in the service of biodiversity conservation and sustainable development. Proceedings o f the National Academy o f Sciences o f the United States o f America, 119(4), e2115641119.

12. Karamendin, K. et al. (2024) ‘Viral metagenomic survey of Caspian seals’, Frontiers in Veterinary Science, 11. doi:10.3389/fvets.2024.1461135.

13. Kolora, S.R.R., Randhawa, H., Deisseroth, A., Mukherjee, S., Phuong, M.A., Paten, B. & Lewin, H.A., 2021. Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science, 374(6571), pp.842¬ 847. DOI: 10.1126/science.abg5332

14. Lewin, H.A. et al. (2022) ‘The Earth Biogenome Project 2020: Starting the Clock’, Proceedings o f the National Academy o f Sciences, 119(4). doi:10.1073/pnas.2115635118.

15. Marx, V. (2023) ‘Method of the year: Long-read sequencing’, Nature Methods, 20(1), pp. 6-11. doi:10.1038/s41592-022-01730-w.

16. Mu, W. et al. (2025) ‘The haplotype-resolved T2T genome for bauhinia x blakeana sheds light on the genetic basis of flower heterosis’, GigaScience, 14. doi:10.1093/gigascience/giaf044.

17. Namroodi, S. et al. (2018) ‘Frequency of exposure of endangered Caspian seals to canine distemper virus, Leptospira interrogans, and Toxoplasma gondii’, PLOS ONE, 13(4). doi:10.1371/journal.pone.0196070.

18. Kathrine Torday Gulden (2023) Transnational collaboration to save the caspian seal - NIBIO, Nibio EN. Available at: https://www.nibio.no/en/news/transnational-collaboration-to-save-the-caspian-seal (Accessed: 14 May 2025).

19. Theissinger, K. et al. (2023) ‘How genomics can help biodiversity conservation’, Trends in Genetics, 39(7), pp. 545-559. doi:10.1016/j.tig.2023.01.005.

20. Tussipkan, D., Shevtsov, V., Ramazanova, M., Rakhimzhanova, A., Shevtsov, A., & Manabayeva, S. (2024). Kazakhstan tulips: Comparative analysis of complete chloroplast genomes of four local and 1433253. https://doi.org/10.3389/fpls.2024.1433253

21. Zuccolo, A. et al. (2023) ‘The Gyrfalcon (falco rusticolus) genome’, G3: Genes, Genomes, Genetics, 13(3). doi:10.1093/g3journal/jkad001.

22. ‘Pusa Caspica: Goodman, S. & Dmitrieva, L.’ (2015) IUCN Red List o f Threatened Species [Preprint]. doi:10.2305/iucn.uk.2016-1.rlts.t41669a45230700.en.


Review

For citations:


Mussurova S., Zuccolo A., Wing R. Reference-grade genomes as a tool for conserving Kazakhstan’s national pride species: the cases of the Caspian seal and Greig’s tulip. Vestnik of M. Kozybayev North Kazakhstan University. 2025;(3 (67)):26-33. https://doi.org/10.54596/2958-0048-2025-3-26-33

Views: 49


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2958-003X (Print)
ISSN 2958-0048 (Online)