
166
М. Қозыбаев атындағы СҚУ Хабаршысы /

Вестник СКУ имени М. Козыбаева. № 4 (68). 2025

АҚПАРАТТЫҚ-КОММУНИКАЦИЯЛЫҚ ТЕХНОЛОГИЯЛАР /
ИНФОРМАЦИОННО-КОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ /

INFORMATION AND COMMUNICATION TECHNOLOGIES

DOI 10.54596/2958-0048-2025-4-166-181
UDK 311.2
IRSTI 49.03.03

OPTIMISING SDN THROUGHPUT VIA FLOW-TABLE MANAGEMENT:
A COMPARATIVE STUDY AND FUTURE RESEARCH OUTLOOK
Azizol Abdullah1*, Mamun Md Arafat Al1, Ahmad Alauddin Ariffin1,

Lili Nurliyana Abdullah1, Mohd Noor Derahman1
1*.Faculty o f Computer Science and Information Technology, Universiti Putra Malaysia,

Malaysia
*Correspondingauthor: azizol@upm.edu.my

A b stract
Softw are-D efined N etw orking (SD N) has transformed how networks are m anaged by separating control

from data plane, m aking them more flex ib le and programmable H ow ever, throughput performance remains
constrained by controller latency and the lim ited size o f ternary content-addressable m em ory (TCAM) in switches.
To tackle this, F low -T able R eduction Schem es (FTRS) offer a sim ple, softw are-driven fix . In this paper, w e
explore how SD N throughput optim ization has evolved , compare popular controllers, and show where FTRS fits
in. W e share real-world results from im plem enting FTRS on the R yu controller, d iscuss w hy these matters for cost
and sustainability, and outline future directions like using m achine learning and m ulti-controller setups for smarter,
faster networks

K eyw ord s: Softw are-D efined N etw orking, F low -T able Reduction, TCAM , R yu Controller, Future
Research

АҒЫНДАР КЕСТЕЛЕРІН БАСҚАРУ АРҚЫЛЫ SDN ӨТКІЗУ ҚАБІЛЕТІН
ОҢТАЙЛАНДЫРУ: САЛЫСТЫРМАЛЫ ЗЕРТТЕУ ЖӘНЕ БОЛАШАҚ

ЗЕРТТЕУЛЕР ПЕРСПЕКТИВАЛАРЫ
Azizol Abdullah1*, Mamun Md Arafat Al1, Ahmad Alauddin Ariffin1,

Lili Nurliyana Abdullah1, Mohd Noor Derahman1
1*Компьютерлік гылымдар және ақпараттық технологиялар факультеті, Путра

Малайзия университеті, Малайзия
*Хат-хабар үшін автор: azizol@upm.edu.my

А ң д а тп а
Бағдарламалық-анықталатын желілер (SD N) басқаруды деректер жазықтығынан бөлу арқылы

ж еліні басқару тәсілін өзгертті, бұл оларды икемді ж әне бағдарламаланатын етті. Дегенмен, өткізу
қабілеттілігі әлі д е контроллердің кідірісім ен ж әне коммутаторлардағы мазмұн адрестеуімен (TCAM)
шектелген үш тік ж ад өлш емімен ш ектеледі. Ағындар кестесін қысқарту схемалары (FTRS) осы м әселесін
ш еш у үш ін қарапайым бағдарламалық ш еш ім ұсынылады. Бұл мақалада SD N өткізу қабілеттілігін
оңтайландыру қалай дамығандығы, танымал контроллерлер салыстырылып, FTR S қай ж ерде
қолданылатындығы көрсетілген. R yu контроллерінде FTRS енгізудің нақты нәтижелері көрсетілген, оның
құны мен тұрақтылығы үш ін не маңызды екендігі зерттелген ж әне ақылды, жылдам желілер үш ін
машиналық оқыту мен көп контроллерлік параметрлерді пайдалану сияқты болашақ бағыттар сипатталған.

К іл т сөздер: бағдарламалық-анықталатын желілер, ағындар кестесін қысқарту, TCAM , Ryu
контроллері, болашақ зерттеулер.

mailto:azizol@upm.edu.my
mailto:azizol@upm.edu.my

М. Қозыбаев атындағы СҚУ Хабаршысы /
Вестник СКУ имени М. Козыбаева. № 4 (68). 2025 167

ОПТИМИЗАЦИЯ ПРОПУСКНОЙ СПОСОБНОСТИ SDN ПОСРЕДСТВОМ
УПРАВЛЕНИЯ ТАБЛИЦАМИ ПОТОКОВ: СРАВНИТЕЛЬНОЕ

ИССЛЕДОВАНИЕ И ПЕРСПЕКТИВЫ БУДУЩИХ ИССЛЕДОВАНИЙ
Azizol Abdullah1*, Mamun Md Arafat Al1, Ahmad Alauddin Ariffin1,

Lili Nurliyana Abdullah1, Mohd Noor Derahman1
!*Факультет компьютерных наук и информационных технологий, Университет Путра

Малайзия, Малайзия
* Автор для корреспонденции: azizol@uvm.edu.my

А н н отац и я
П рограммно-определяемые сети (SD N) изменили п одход к управлению сетями, отделив контроль

от плоскости передачи данных, что сделало их более гибкими и программируемыми. Однако пропускная
способность по-преж нем у ограничивается задерж кой контроллера и ограниченным размером троичной
памяти с адресацией по содерж анию (TCAM) в коммутаторах. Для реш ения этой проблемы схемы
сокращения таблиц потоков (FTRS) предлагается простое программное реш ение. В этой статье
исследовано, как развивалась оптимизация пропускной способности SD N , сравниваются популярные
контроллеры и показаны, где FTRS м ожет быть применен. Показаны реальные результаты внедрения
FTRS на контроллере Ryu, изучено, почему это важно для стоимости и устойчивости, и описаны будущ ие
направления, такие как использование маш инного обучения и настроек с несколькими контроллерами для
более умны х и быстрых сетей.

К л ю ч ев ы е слова: П рограммно-определяемые сети, сокращ ение таблиц потоков, TCAM ,
контроллер Ryu, будущ ие исследования

1. Introduction
Software-Defined Networking (SDN) changes the game by splitting control from data

plane, giving networks the flexibility to adapt quickly and be managed through software instead
of rigid hardware rules. This makes it easier to apply dynamic policies and optimize traffic flow
(McKeown et al., 2008; Kreutz et al., 2015) as shown in Figure 1. However, despite these
advantages, performance degradation remains a persistent challenge. Particularly when reactive
controllers face high volumes of short-lived or micro-burst flows (Yang et al., 2022; Gao et al.,
2022). These micro-bursts create delays and overload the control plane, slowing down the entire
network (Tootoonchian et al., 2012; Ghobadi et al., 2020).

Figure 1. General architecture of Software-Defined Networking (SDN) showing decoupled
control and data planes (adapted from McKeown et al., 2008).

mailto:azizol@uvm.edu.my

168
М. Қозыбаев атындағы СҚУ Хабаршысы /

Вестник СКУ имени М. Козыбаева. № 4 (68). 2025

Flow-table congestion, a recurring issue in high-speed SDN switches, stems mainly from
limited TCAM (Ternary Content Addressable Memory) capacity (Zahavi & Zilberman, 2021).
When TCAM entries become saturated, switches experience delays in flow matching, resulting
in packet drops and control overhead amplification. This degradation directly affects Quality
of Service (QoS) metrics, including latency, jitter, and throughput (Curtis et al., 2011; Alizadeh
et al., 2014). To mitigate these limitations, researchers have proposed Flow-Table Reduction
Schemes (FTRS), which compress similar flow entries into aggregated wildcard rules, thereby
reducing control-plane overhead and TCAM exhaustion (Leng et al., 2017; Chen et al., 2021).
In practical deployments, FTRS is particularly beneficial in high-density and latency-sensitive
environments such as data center fabrics, Internet of Things (IoT) gateways, smart campus
networks, and 5G edge computing infrastructures. In these scenarios, networks often experience
high volumes of short-lived microflows, which rapidly exhaust TCAM resources and overload
reactive controllers. By aggregating redundant flow rules, FTRS is expected to reduce TCAM
utilization by approximately 30-50% and improve controller processing efficiency, leading to
measurable gains in throughput and latency under real-world traffic workloads.

Yet, most FTRS implementations have been validated only through simulation, with few
practical deployments on lightweight, Python-based controllers such as Ryu (Shalimov et al.,
2013; Fernandez et al., 2018). This study bridges the current research gap by implementing an
optimized Flow-Table Reduction Scheme (FTRS) on the Ryu controller and comparing its
throughput performance against other SDN platforms. Specifically, the research examines the
evolution of SDN controller architectures, evaluates the throughput performance of Ryu under
flow-table optimization, and analyzes the comparative strengths and weaknesses of different
controller platforms. Furthermore, it outlines future research pathways for enhancing intelligent
flow management through the integration of machine learning techniques.

The remainder of this paper is structured as follows. Section 2 reviews the evolution of
SDN controllers and related work on flow-table optimization. Section 3 outlines the
methodology used for implementing and testing the FTRS in Ryu. Section 4 presents
comparative experimental results and performance analysis. Section 5 discusses key
implications and limitations. Section 6 proposes future research directions, and Section 7
concludes the paper.

2. Background and Related Work
This section reviews how SDN controllers have evolved from early centralized designs

to modern distributed and lightweight platforms. We also look at the challenges of managing
flow tables and how techniques like FTRS help reduce congestion and improve performance.
(Gude et al., 2008; Berde et al., 2014; Fernandez et al., 2018).

2.1 Evolution of SDN Controllers
The evolution of Software-Defined Networking (SDN) controllers reflects the broader

trajectory of SDN itself, from academic prototypes to production-grade, scalable network
control platforms. Controllers serve as the “brain” of SDN, managing the network state,
computing flow rules, and maintaining communication with switches through the southbound
interface (e.g., OpenFlow). Over the past decade, controller architectures have evolved
significantly, each generation attempting to balance scalability, latency, fault tolerance, and
programmability (Kreutz et al., 2015; Lara et al., 2014) as shown in Figure 2.

М. Қозыбаев атындағы СҚУ Хабаршысы /
Вестник СКУ имени М. Козыбаева. № 4 (68). 2025 169

Figure 2. Evolution of SDN controllers from centralized (NOX, POX) to distributed (ONOS,
OpenDaylight) and lightweight (Ryu, Faucet) architectures (adapted from Fernandez et al.,

2018; Berde et al., 2014)

First-generation controllers such as NOX and POX (McKeown et al., 2008; Gude et al.,
2008) served as foundational proofs-of-concept, introducing programmable control over
forwarding elements. However, they exhibited scalability challenges, particularly under heavy
P A C K E T I N loads, as all flow decisions were managed by a single centralized controller. This
architecture, though innovative, struggled to maintain low latency in large-scale deployments.
Distributed controllers such as ONOS (Berde et al., 2014) and OpenDaylight (Medved et al.,
2014) were developed to address scalability and fault tolerance. They employ clustered control
planes to distribute decision-making across nodes. While these platforms improve reliability,
they introduce quorum-induced latency, where inter-node synchronization increases control
delays (Ghobadi et al., 2020; Ganji et al., 2024).

Intent-based controllers like Cisco ACI and Juniper Contrail abstract network policies
into high-level intents that automatically compile into flow rules (Monsanto et al., 2013; Kim
& Feamster, 2013). This abstraction simplifies management but inadvertently amplifies TCAM
consumption, as the system must pre-install multiple rules for generalized intent enforcement.
Lightweight controllers, such as Ryu and Faucet, emerged as flexible, developer-friendly
frameworks prioritizing ease of prototyping and rapid integration. Ryu stands out due to its
Python-based modularity, allowing researchers to experiment with flow-table algorithms and
machine learning integration with minimal setup complexity (Shalimov et al., 2013; Fernandez
et al., 2018).

Overall, the evolution from NOX to Ryu illustrates a clear trajectory toward greater
modularity, openness, and deployability. The shift from monolithic to lightweight controller
architectures signifies not just a technological refinement but a philosophical transition. Its
prioritising programmability and adaptability over raw scalability. Within this context,
implementing performance-enhancing schemes such as FTRS inside Ryu represents a logical
step in the ongoing pursuit of efficient, reproducible, and energy-conscious SDN control
frameworks.

2.2 Flow-Table Management Challenges
One of the most fundamental design trade-offs in Software-Defined Networking (SDN)

lies in determining how and when flow rules are installed in switches that profoundly impacts
latency, scalability, and throughput. SDN controllers typically adopt either reactive or proactive
flow management strategies, each with unique strengths and limitations depending on network

170
М. Қозыбаев атындағы СҚУ Хабаршысы /

Вестник СКУ имени М. Козыбаева. № 4 (68). 2025

topology, traffic patterns, and operational objectives (Kreutz et al., 2015; He et al., 2021). In
reactive flow management, the controller installs flow entries dynamically in response to the
first packet of each new flow. When a switch encounters an unknown flow, it issues a
P A C K E T I N message to the controller, which computes the forwarding path and returns a
F L O W M O D instruction (McKeown et al., 2008). This approach ensures that only active flows
occupy TCAM space, conserving memory resources and enabling fine-grained policy
enforcement. Reactive control is thus well suited for environments requiring context-aware
routing, such as intrusion detection, anomaly tracking, or load balancing at the edge (Yeganeh
et al., 2013; Kim & Feamster, 2013).

However, the major limitation of the reactive paradigm lies in control-plane latency. Each
new flow induces a round-trip delay between the switch and controller, often on the order of
tens of milliseconds, which becomes problematic under micro-burst or elephant-flow
conditions (Kobayashi et al., 2014). As network scale increases, the volume of P A C K E T I N
requests can saturate controller queues, resulting in dropped packets, inflated RTTs, and
degraded throughput (Fernandez et al., 2018; Hu et al., 2020). The latency cost of reactive
control has therefore been a key driver of SDN performance bottlenecks in data centres and
cloud environments. By contrast, proactive flow management pre-installs flow entries before
traffic arrival, based on predicted communication patterns or static topology knowledge
(Tootoonchian et al., 2012). This strategy eliminates controller roundtrips during packet
forwarding, allowing near-immediate data-plane processing. In highly stable or predictable
networks such as backbone ISPs, enterprise LANs, or IoT clusters where proactive provisioning
can drastically reduce control overhead and ensure deterministic latency (Curtis et al., 2011).
However, this gain comes at the cost of flow-table overutilisation. Since rules are installed pre­
emptively, many entries may remain unused or become obsolete, consuming valuable TCAM
resources and reducing space for dynamically generated flows (Zahavi & Zilberman, 2021).

The tension between these two paradigms is reactive flexibility versus proactive speed
which has led to numerous attempts at hybrid flow management. Hybrid controllers seek to
classify traffic into mice (short-lived) and elephant (long-lived) flows, applying reactive
strategies to the former and proactive strategies to the latter (Benson et al., 2010; Alizadeh et
al., 2014). Techniques such as DevoFlow (Curtis et al., 2011) and Mahout (Curtis et al., 2012)
introduced hierarchical aggregation, where switches autonomously handle frequent flows while
the controller manages strategic updates. These solutions reduce controller load but often
require hardware or firmware extensions, limiting their general adoption. Moreover, accurate
flow classification remains a persistent challenge specially under bursty, asymmetric, or
encrypted traffic, where flow duration and size are difficult to predict (Liu et al., 2020).

Leng, Liu, and Li (2017) introduced the Flow-Table Reduction Scheme (FTRS) as an
aggregation-based solution, consolidating multiple microflows into broader wildcard entries.
In the context of this study, Flow-Table Reduction Schemes (FTRS) can be viewed as a
complementary enhancement to both reactive and proactive paradigms. By aggregating or
wildcarding flow rules, FTRS reduces the frequency of controller interactions (benefiting
reactive control) and minimises the TCAM burden from pre-installed rules (benefiting
proactive control). Thus, it provides a middle ground that enhances control-plane efficiency and
data-plane throughput without requiring hardware modifications. Subsequent variants such as
hFTRS (hierarchical flow aggregation) and Mask-FTRS (entropy-aware compression) further
improved scalability (Chen et al., 2021; Gao et al., 2022). However, empirical validation
remains limited, particularly within lightweight, Python-based controllers like Ryu which
highlighting the need for practical deployment studies. The integration of FTRS into the Ryu

М. Қозыбаев атындағы СҚУ Хабаршысы /
Вестник СКУ имени М. Козыбаева. № 4 (68). 2025 171

controller demonstrates that software-centric optimisations can yield substantial improvements
even within single-controller architectures, validating the potential of hybrid, adaptive
approaches for next-generation SDN performance.

2.3 TCAM Optimisation Techniques
Ternary Content-Addressable Memory (TCAM) plays a crucial role in high-speed packet

forwarding within SDN switches, but its limited capacity, high cost, and power consumption
continue to constrain scalability (Zahavi & Zilberman, 2021). Each flow rule installed by the
controller occupies an entry in TCAM, and as the number of flows grows, congestion in the
flow table leads to packet drops, increased lookup delays, and degraded throughput.
Consequently, several techniques have been proposed to optimise TCAM usage and improve
flow-table efficiency. A common approach is wildcard compression, where similar flow entries
are merged into generalised rules using masks or prefixes (Leng et al., 2017). This reduces the
number of active entries while maintaining forwarding accuracy. However, aggressive
compression can introduce misclassification errors if flows share overlapping match fields
(Chen et al., 2021). Another method, rule aggregation and reordering, prioritises frequently
used rules or groups flows based on traffic frequency, improving cache locality and reducing
lookup time (Yang et al., 2022).

To further enhance scalability, researchers have proposed hierarchical flow-table
architectures and multi-stage lookup models, where frequently accessed rules reside in faster
memory while rarely used entries are offloaded to secondary storage (Wang et al., 2020). While
effective, such solutions often require hardware modification or firmware updates, making them
less practical for existing SDN deployments. From a software perspective, techniques such as
Flow-Table Reduction Schemes (FTRS) combine the benefits of wildcard compression and
flow aggregation within the controller, offering a deployable, hardware-independent
optimisation. By reducing redundant flow entries before installation, FTRS alleviates TCAM
congestion without requiring changes to the data plane. This balance between efficiency and
deployability makes FTRS a promising solution for real-world SDN environments, especially
in lightweight controllers like Ryu. Recent studies have explored alternative flow management
paradigms beyond traditional flow-table reduction. For example, P4-programmable data planes
enable in-switch packet processing and rule optimization without constant controller interaction
(Bosshart et al., 2014; Qin et al., 2023). Reinforcement Learning (RL)-based rule management
has also gained attention, where intelligent agents dynamically adapt flow rules based on
network state feedback (Wang et al., 2022). While these approaches demonstrate strong
potential, they often require specialized hardware or introduce significant training overhead.
This study addresses the gap by providing a lightweight, software-based optimization scheme
that can be directly integrated into widely used controllers such as Ryu, without requiring
programmable hardware or complex AI infrastructures.

3. Methodology
This section describes the experimental framework used to evaluate the performance of

the proposed Flow-Table Reduction Scheme (FTRS) on the Ryu controller. We built a virtual
SDN testbed using Mininet and the Ryu controller to test how well FTRS improves throughput.
The setup includes virtual switches and hosts, and we measured performance using standard
tools like iPerf and Ping

FTRS was evaluated under the following controlled environment:
Parameter Configuration
Controller Ryu v4.34
Emulator Mininet v2.3.0

172
М. Қозыбаев атындағы СҚУ Хабаршысы /

Вестник СКУ имени М. Козыбаева. № 4 (68). 2025

Parameter
OpenFlow
Traffic Generator
Simulation Time
Topologies

Configuration
v1.3
iPerf3
600 seconds
Identical across all tests

3.1 Experimental Testbed Setup
The experiments were conducted using Mininet, an open-source Software-Defined

Networking (SDN) emulator that enables the creation of virtual networks running real kernel,
switch, and application code (McKeown et al., 2008). Mininet was selected for its flexibility in
emulating realistic network topologies and its compatibility with multiple SDN controllers. The
Ryu controller served as the primary platform due to its modular, Python-based architecture,
which facilitates rapid prototyping of flow-table algorithms. To ensure comprehensive
evaluation, the proposed FTRS-enabled Ryu controller was compared against three baseline
configurations: default Ryu, ONOS, and OpenDaylight. Each controller was deployed in
isolation to eliminate inter-controller interference, and identical topology parameters were
applied across all tests to maintain fairness.

As shown in figure 3, the testbed consisted of:
• One SDN controller (Ryu, ONOS, or OpenDaylight per experiment)
• Three Open vSwitch (OVS) instances representing the data plane
• Six virtual hosts generating traffic across multiple paths

Figure 3. Experimental SDN testbed topology used for throughput evaluation, showing the
Ryu controller connected to three Open vSwitch nodes and six host pairs (generated using

Mininet)

All simulations were executed on a workstation equipped with an Intel Core i7 processor,
16 GB RAM, and running Ubuntu 22.04 LTS.

3.2 Implementation of Flow-Table Reduction Scheme (FTRS)
The Flow-Table Reduction Scheme was implemented as a module within Ryu’s flow

management layer. The design logic follows a three-stage process:

М. Қозыбаев атындағы СҚУ Хабаршысы /
Вестник СКУ имени М. Козыбаева. № 4 (68). 2025 173

I. Flow classification - incoming packets are analyzed to identify traffic patterns based
on header fields such as source/destination IP, port, and protocol type.

II. Aggregation and compression - similar flows are aggregated into wildcard rules,
reducing the total number of entries in the TCAM.

III. Rule deployment - aggregated flow rules are dynamically installed in the switch using
Ryu’s southbound OpenFlow interface.

A feedback loop was also introduced to monitor flow-table utilization in real time. When
table occupancy reached a predefined threshold (80%), the controller automatically triggered a
re-aggregation routine to maintain optimal flow-table size. This adaptive mechanism ensured
that memory exhaustion did not compromise throughput or introduce packet loss.

Figure 4. Implementation workflow of the Flow-Table Reduction Scheme (FTRS) in the Ryu
controller, showing stages of classification, aggregation, and dynamic rule installation

3.3 Flow-Table Reduction Scheme (FTRS): Design and Algorithm
This section presents the formal design of the proposed Flow-Table Reduction Scheme

(FTRS), including its algorithmic logic and rule-processing mechanism. The main objective of
FTRS is to minimize the number of flow entries installed in OpenFlow-based switches while
preserving forwarding correctness and control-plane consistency.

Let F = {/]_, f 2, . . . , f n]be the set of flow rules generated by the controller, where each flow
entry fa consists of a tuple (Mt, A t, Pt, 7)), representing its match fields, action set, priority value,
and timeout parameters, respectively. The aim of FTRS is to generate an optimized flow set
F ' c Fsuch that:

I Ғ ' |« | F I and F o r w a r d i n g (F') = F o r w a r d i n g (F)

where F o r w a r d i n g (-)represents the forwarding behaviour of the network.

FTRS operates in three main stages: (i) redundancy elimination, (ii) rule aggregation, and
(iii) timeout-based cleanup.

Algorithm 1: Flow-Table Reduction Scheme (FTRS)
Inputs:
• F: Original flow table
• Ө: Timeout threshold
• T : Priority set
Output:
• F': Optimized flow table

Algorithm 1: Flow-Table Reduction Scheme (FTRS)
1: Initialize F’ ^ 0
2: Sort F by decreasing priority
3: for each flow entry fi 6 F do

174
М. Қозыбаев атындағы СҚУ Хабаршысы /

Вестник СКУ имени М. Козыбаева. № 4 (68). 2025

4: if isRedundant(fi, F’) = false then
5: if canAggregate(fi, F’) = true then
6: Aggregate fi with matching rule in F’
7: else
8: Insert fi into F’
9: end if
10: end if
11: end for
12: Remove entries where idle timeout(fi) > Ө
13: return F’

Rule Redundancy Detection
A flow entry f i is declared redundant if an existing rule in the optimized table F'fully

covers its match space and enforces an identical action:
(Mi C Mj) Л (Ai = A j) Л (Pi < Pj)

This ensures that removing ft does not alter forwarding behavior.

Rule Aggregation Strategy
Two rules f i and ftare aggregated if all the following conditions are satisfied:

1. Ai = Aj (identical action set)
2. I H (M t, Mj) |< 1(Hamming distance between match fields < 1

bit)
3. No conflict exists in priority ordering

When aggregation occurs, FTRS replaces both rules with a generalized wildcard rule
covering both match spaces.

3.4 Integration of FTRS in the Ryu SDN Controller
The FTRS module is integrated directly into the Ryu SDN controller by modifying the

standard flow-installation pipeline of the simple_switch_13 application. The integration
intercepts OpenFlow FlowMod messages before they are sent to the datapath.

FTRS is invoked within the EventOFPSwitchFeatures and EventOFPPacketIn handlers.
Integration Code Snippet (Ryu)
@set ev cls(ofp event.EventOFPPacketIn, MAIN DISPATCHER)
def packet in handler(self, ev):

flows = self.extract current flows()
optimized flows = self.apply ftrs(flows)
self.install flows(optimized flows)

This mechanism ensures that only optimized flow entries are installed in the switch,
reducing flow-table pressure and control-plane overhead.

3.5 Performance Metrics
The evaluation focused on three primary performance indicators:
• Throughput (Mbps): the total volume of data successfully transmitted over the

network per second, measured using iPerf3 traffic generator.
• Latency (ms): the round-trip delay between packet transmission and

acknowledgment, captured via Ping utilities integrated in Mininet.
• Flow-table utilization (%): the ratio of active flow entries to total TCAM capacity,

derived from Open vSwitch statistics.

М. Қозыбаев атындағы СҚУ Хабаршысы /
Вестник СКУ имени М. Козыбаева. № 4 (68). 2025 175

Each experiment was repeated five times under identical network loads to ensure
statistical reliability, and the average of each metric was reported. The performance of the
FTRS-enabled Ryu controller was then compared against baseline results to assess throughput
gains, latency reduction, and memory efficiency improvements.

4. Results and Comparative Analysis
This section presents the experimental findings from implementing the Flow-Table

Reduction Scheme (FTRS) within the Ryu controller and compares its performance against
ONOS and OpenDaylight controllers. Our tests show that adding FTRS to Ryu improves
throughput, reduces latency, and uses flow-table memory more efficiently. Compared to ONOS
and OpenDaylight, the optimized Ryu controller performed better under heavy traffic.

4.1 Throughput Performance
Figure 5 illustrates the throughput achieved by different SDN controllers. The FTRS-

enhanced Ryu consistently demonstrated superior performance, sustaining higher throughput
levels across increasing traffic loads. Under heavy network stress (> 500 Mbps), the optimized
Ryu controller maintained a stable throughput averaging 450 Mbps, outperforming baseline
Ryu by approximately 22% and ONOS by 15%. This improvement is attributed to the reduced
control-plane signaling achieved through aggregated flow rules. By minimizing the number of
P A C K E T I N events sent to the controller, the data plane maintained a steady forwarding rate,
effectively mitigating congestion. Similar trends were reported in studies by Chen et al. (2021)
and Gao et al. (2022), confirming that aggregated wildcarding enhances data-plane stability and
efficiency.

Figure 5. Throughput comparison between baseline Ryu, FTRS-optimized Ryu, ONOS, and
OpenDaylight controllers under varying network loads (measured in Mbps)

4.2 Latency Analysis
Latency results, shown in Figure 6, reveal a noticeable improvement in round-trip delay

for the FTRS-optimized Ryu controller. On average, latency decreased by 17% compared to
the default Ryu configuration and by 11% compared to OpenDaylight. The primary cause of
this reduction lies in the minimized control-plane interactions where once the wildcard rules
were installed, the switches handled most flows locally without requesting controller
intervention. Furthermore, the adaptive re-aggregation mechanism prevented excessive rule
churn, maintaining stable latency even under fluctuating workloads. These findings are

176
М. Қозыбаев атындағы СҚУ Хабаршысы /

Вестник СКУ имени М. Козыбаева. № 4 (68). 2025

consistent with prior works (Yang et al., 2022; Wang et al., 2022), which emphasize that
reducing flow-table updates directly improves packet forwarding efficiency.

Round-Trip Time (RTT) Comparison Across SON Controllers

Figure 6. Average RTT (ms) comparison among SDN controllers, highlighting the reduced
control-plane delay in the FTRS-enhanced Ryu.

4.3 Flow-Table Utilization
Figure 7 compares flow-table utilization across the tested controllers. The baseline Ryu

and ONOS controllers showed rapid TCAM growth as the number of active flows increased.
In contrast, the FTRS-enhanced Ryu maintained a 35-40% lower flow-table occupancy,
confirming the effectiveness of flow aggregation in conserving memory resources.

The hierarchical compression used in the FTRS reduced redundant entries while
retaining sufficient granularity to differentiate between unique traffic patterns. As a result,
TCAM exhaustion was significantly delayed, thereby sustaining consistent throughput over
extended test durations.

Figure 7. Flow-table utilization (%) across different controllers showing the impact of FTRS
aggregation on TCAM efficiency.

4.4 Comparative Discussion
The comparative results demonstrate that lightweight controllers like Ryu, when

enhanced with optimized flow management schemes, can achieve throughput and latency

М. Қозыбаев атындағы СҚУ Хабаршысы /
Вестник СКУ имени М. Козыбаева. № 4 (68). 2025 177

performance comparable to heavier distributed platforms such as ONOS and OpenDaylight.
Although ONOS exhibited slightly better resilience under extreme loads, Ryu’s modular
architecture allowed faster adaptation to optimization algorithms.

In summary, the integration of FTRS into Ryu validates the practicality of flow
compression as a low-cost and effective method for improving SDN scalability. These results
also underscore the potential of lightweight controllers for experimental and production
environments where efficiency and flexibility are prioritized. Although FTRS significantly
improves flow-table efficiency, its scalability may be constrained in ultra-large-scale
deployments exceeding millions of concurrent flows, where aggregation boundaries become
increasingly complex. Furthermore, in highly heterogeneous traffic environments, aggressive
wildcard aggregation may introduce a risk of flow misclassification or suboptimal forwarding
decisions. However, during our experiments, no measurable false matches or forwarding
anomalies were observed, suggesting that the scheme remains safe within practical operating
thresholds.

5. Discussion
These results show that smart software tweaks like FTRS can make a big difference even

on lightweight controllers like Ryu. By reducing control traffic and compressing flow rules,
networks run smoother and faster without needing new hardware. One of the major findings is
that control-plane optimization does not necessarily require distributed or hardware-intensive
solutions. Traditional approaches such as clustered controllers (ONOS, OpenDaylight) improve
scalability through distribution, but they introduce additional synchronization delays and
resource overhead (Ghobadi et al., 2020). In contrast, Ryu’s simplicity enables local processing
and algorithmic flexibility, allowing software-based enhancements like FTRS to yield
measurable throughput and latency improvements.

These results align with prior observations by Leng et al. (2017) and Chen et al. (2021),
who showed that aggregating flow entries into wildcard rules can reduce table lookup times and
control signaling frequency. However, the present work extends those findings by
demonstrating a practical, deployable implementation within a real controller environment that
moving beyond theoretical models and simulation-based evaluations. The observed 35-40%
reduction in flow-table occupancy confirms the efficiency of hierarchical rule compression in
mitigating TCAM exhaustion. This outcome suggests that even in resource-constrained
environments, optimizing flow-table structures can delay saturation and maintain consistent
forwarding performance. The reduction in latency further reinforces the concept that
minimizing controller-switch communication can substantially lower packet processing delays.

Beyond throughput optimization, the findings also emphasize the importance of adaptive
re-aggregation mechanisms. Static flow aggregation, while beneficial, can lead to inefficiencies
under changing traffic dynamics. The adaptive model implemented in this study ensures real­
time responsiveness to variations in traffic load, making the system more robust for practical
network conditions. From a broader perspective, these outcomes support the argument that
SDN research should shift toward software-level intelligence rather than purely hardware­
centric scalability improvements. Lightweight controllers like Ryu can serve as testbeds for
experimental AI-assisted control strategies that offering a balance between flexibility,
transparency, and research reproducibility.

Nevertheless, some limitations were observed. The current implementation is constrained
by Ryu’s single-threaded architecture, which limits its concurrency under extreme packet rates.
Additionally, Mininet’s virtualized environment cannot fully emulate high-throughput physical
switches, potentially affecting real-world accuracy. Future validation on hardware-based

178
М. Қозыбаев атындағы СҚУ Хабаршысы /

Вестник СКУ имени М. Козыбаева. № 4 (68). 2025

testbeds such as P4 or FPGA-integrated platforms would help confirm the scalability of the
proposed approach.

Key Performance Improvements with FTRS Integration in Ryu

Figure 8. Summary of key performance improvements achieved through FTRS integration in
Ryu, highlighting throughput gains, latency reduction, and TCAM efficiency

6. Future Research Outlook
While this study has demonstrated the effectiveness of Flow-Table Reduction Scheme

(FTRS) when practically integrated into the Ryu SDN controller in optimizing throughput and
mitigating TCAM exhaustion, several opportunities remain for extending this work through
intelligent and autonomous control mechanisms. The next generation of SDN optimization
should focus on integrating machine learning (ML) and artificial intelligence (AI) models for
predictive and autonomous control.

One key avenue involves ML-based flow prediction, where neural or ensemble models
can anticipate traffic patterns and proactively install rules before congestion occurs (Zhang et
al., 2021; Wang et al., 2022). Such predictive strategies could complement FTRS by
dynamically adjusting aggregation thresholds and flow classification boundaries in real time.
The combination of rule compression and learning-based flow anticipation would allow the
controller to operate with minimal manual configuration, improving adaptability to diverse
traffic conditions. Another potential area is reinforcement learning (RL) for flow-table
management. RL models can learn optimal rule-placement policies based on historical
performance feedback, continuously refining their decision-making to balance throughput,
latency, and memory efficiency (Zhao et al., 2020; Li et al., 2021). Integrating these models
into Ryu’s architecture could transform it into a self-optimizing controller capable of
autonomously managing network states.

Beyond algorithmic advances, multi-controller collaboration frameworks should be
explored. While Ryu operates as a single-threaded system, integrating it into a hybrid or
distributed environment could leverage both the agility of lightweight controllers and the
resilience of clustered ones like ONOS or OpenDaylight. Such hybridization would provide
scalability without sacrificing flexibility. Lastly, future work should address real-world
implementation and validation. Hardware-based evaluations using programmable switches
(e.g., P4 or NetFPGA) and testbeds such as GENI or CloudLab can offer more accurate insights

М. Қозыбаев атындағы СҚУ Хабаршысы /
Вестник СКУ имени М. Козыбаева. № 4 (68). 2025 179

into flow-table dynamics under large-scale, high-throughput conditions. Combining
experimental results with theoretical models will further strengthen the generalizability and
industrial applicability of the proposed FTRS optimization.

Overall, the convergence of AI-driven decision-making, hybrid control-plane
architectures, and dynamic flow optimization represents the next frontier in achieving
intelligent, high-performance, and self-adaptive SDN systems. Future work will specifically
investigate the integration of supervised learning and reinforcement learning models to replace
static aggregation thresholds with adaptive, self-tuning policies that respond dynamically to
time-varying network conditions.

7. Conclusion
This paper presented an implementation and evaluation of a Flow-Table Reduction

Scheme (FTRS) within the Ryu Software-Defined Networking (SDN) controller, aiming to
enhance throughput and reduce control-plane congestion. In summary, FTRS is a simple yet
powerful way to boost SDN performance. It works well with Ryu and shows that software-
based solutions can deliver real benefits without expensive upgrades. Through systematic
experimentation in Mininet, the study revealed that the FTRS-optimized Ryu controller
achieved up to 22% higher throughput, 17% lower latency, and 35-40% improved flow-table
efficiency compared to baseline configurations and competing controllers such as ONOS and
OpenDaylight. These improvements validate the hypothesis that intelligent flow aggregation
significantly reduces control-plane signaling overhead and memory pressure.

The findings reinforce the potential of lightweight controllers for high-performance
network environments, especially when enhanced through software-level intelligence.
Moreover, the study provides an empirical foundation for future integration of adaptive,
learning-based flow management algorithms in SDN, bridging the gap between conceptual
research and practical deployment. In summary, the proposed FTRS-based optimization offers
a pragmatic pathway toward achieving scalable, efficient, and intelligent SDN architectures
without relying on costly hardware upgrades or complex distributed systems.

R eferen ces
1. A lizadeh, M ., Edsall, T., Dharmapurikar, S., Vaidyanathan, R., Chu, K., Fingerhut, A ., Lam, V. T.,
Matus, F., Pan, R., Yadav, N ., & V arghese, G. (2014). CONGA: Distributed congestion-aw are load
balancing for datacenters. Proceedings o f A C M SIGCOM M , 5 0 3 -5 1 4 .
2. B enson, T., Akella, A ., & M altz, D . (2010). N etw ork traffic characteristics o f datacenters in the wild.
Proceedings o f the 10th A C M Internet M easurem ent Conference (IM C ’10), 2 6 7 -2 8 0 .
3. Berde, P., Gerola, M ., Hart, J., H iguchi, Y ., K obayashi, M ., K oide, T., Lantz, B ., O'Connor, B .,
R adoslavov, P., Snow, W ., & Parulkar, G. (2014). ONOS: Towards an open, distributed SD N operating
system . Proceedings o f the 3rd W orkshop on H ot T opics in Software D efined N etw orking (H otSD N), 1 -6 .
4. Chen, H., Guo, Y ., Wu, Z., Liu, Y ., & Hu, J. (2021). Entropy-aware wildcard com pression for flow -
table management. IEEE Transactions on N etw ork and Service M anagem ent, 18(4), 3 9 0 4 -3 9 1 6 .
5. Curtis, A. R., M ogul, J. C., Tourrilhes, J., Yalagandula, P., Sharma, P., & Banerjee, S. (2011).
D evoFlow : Scaling flow m anagem ent for high-perform ance networks. A C M SIGCOM M Computer
C om m unication R eview , 41(4), 2 5 4 -2 6 5 .
6. Fernandez, M ., Frangoudis, P., K outsiam anis, R. A ., D ilaveroglu, S., & Tom kos, I. (2018). Performance
com parison o f open-source SD N controllers. Computer Com m unications, 128, 3 6 -4 7 .
7. Gao, Z., Lu, C., Zhou, H., & Lei, W. (2022). Aggregated flow -table techniques for scalable SDN.
Computer Netw orks, 210, 108940.
8. Ghobadi, M ., Sivaraman, V ., Mahimkar, A ., Boppana, R., & A lizadeh, M. (2020). Characterizing and
optim izing distributed SD N controller coordination. IEEE Transactions on N etw ork and Service
M anagem ent, 17(3), 1644-1656 .

180
М. Қозыбаев атындағы СҚУ Хабаршысы /

Вестник СКУ имени М. Козыбаева. № 4 (68). 2025

9. Gude, N ., K oponen, T., Pettit, J., Pfaff, B ., Casado, M ., M cK eow n, N ., & Shenker, S. (2008). NOX:
Towards an operating system for networks. A C M SIGCOM M Computer C om m unication R eview , 38(3),
105-110 .
10. He, Q., X ia, S., Sun, X ., & Zhang, X . (2021). Latency-aware flow scheduling in softw are-defined
networks. IEEE Transactions on Netw ork and Service M anagem ent, 18(2), 1339-1353 .
11. Hu, Y ., Wu, J., Yang, W ., & Zhang, Y . (2020). Hardware support for efficient SD N rule offloading.
IEEE/ACM Transactions on Networking, 28 (2), 7 1 9 -7 3 3 .
12. Kang, J., Li, Y ., Zhang, H ., & Zheng, Y . (2021). L ightw eight SD N controller architecture for scalable
network m anagement. Future Generation Computer System s, 116, 2 2 2 -2 3 3 .
13. Kim , H ., & Feamster, N . (2013). Im proving network m anagem ent w ith SDN . IEEE Com m unications
M agazine, 51(2), 114-119 .
14. K obayashi, M ., Muraoka, Y ., Shirose, Y ., & Y am aguchi, N . (2014). O penFlow channel latency issues
in large-scale deploym ents. IEEE C om m unications M agazine, 52(2), 8 6 -9 2 .
15. Kreutz, D ., Ram os, F. M. V ., & V erissim o, P. (2015). Software-defined networking: A com prehensive
survey. Proceedings o f the IEEE, 103(1), 14-76 .
16. Leng, J., Liu, X ., & Li, F. (2017). F low -table reduction in SDN . Proceedings o f the 14th U SE N IX
Sym posium on N etw orked System s D esign and Im plem entation (N S D I’17), 1 -13 .
17. Li, J., Zhao, W ., W ang, Y ., & Li, Q. (2021). L ightw eight m achine learning for real-tim e SD N control.
Journal o f N etw ork and Computer Applications, 194, 103224.
18. Liu, H., Hu, Y ., & W ang, H. (2020). Adaptive flo w classification for hybrid SD N traffic engineering.
IEEE A ccess, 8, 198544 -198554 .
19. M cC auley, M ., Smith, D ., M iller, E., & Timm , J. (2013). POX: Python-based SD N controller for rapid
prototyping. Open N etw orking Sum mit (O N S), 1 -6 .
20. M cK eow n, N ., Anderson, T., Balakrishnan, H ., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., &
Turner, J. (2008). OpenFlow: Enabling innovation in cam pus networks. A C M SIGCOM M Computer
C om m unication R eview , 38(2), 6 9 -7 4 .
21. M edved, J., Varga, R., Gondzio, J., & Zim alyaev, N . (2014). O penDaylight: Towards a m odel-driven
SD N controller architecture. IEEE/IFIP N etw ork Operations and M anagem ent Sym posium (N O M S), 1 -6 .
22. M onsanto, C., R eich, J., Foster, N ., W alker, D ., & Zeng, H. (2013). C om posing softw are-defined
networks. Proceedings o f the 10th U SE N IX Sym posium on N etw orked System s D esign and
Im plem entation (N S D I’13), 1 -13 .
23. Qin, X ., Huang, Y ., Liu, P., Jiang, S., Ma, S., & Li, Z. (2023). F low optim ization for 5G edge SD N
networks w ith TC A M lim itations. IEEE C om m unications Surveys & Tutorials, 25 (2), 9 0 1 -9 2 4 .
24. Shalim ov, A ., Petrov, I., Y egorov, I., M oiseenko, I., & Khakupov, R. (2013). R yu SD N framework:
Architecture and performance evaluation. A C M Sym posium on SD N R esearch (SO SR), 1 -6 .
25. Sheikh, M ., Abdullah, N . A ., H am eed, S., & Wan, K. H. (2024). Comparative evaluation o f open-source
SD N controllers. Journal o f N etw ork and System s M anagem ent, 32(1), 9 5 -1 1 2 .
26. Singh, A ., Ong, J., Agarwal, A ., Anderson, G., Armistead, A ., Bannon, R., B oving, S., D esai, G.,
Felderman, B ., & M eloy, S. (2015). Jupiter rising: A decade o f datacenter network innovation. Proceedings
o f A C M SIGCOM M , 45(4), 183 -197 .
27. Tootoonchian, A ., Ganjali, Y ., Sherwani, J., & Firooz, M. (2012). O n controller performance in
softw are-defined networks. Proceedings o f the 2nd U SE N IX W orkshop on H ot T opics in M anagem ent o f
Internet, Cloud, and Enterprise N etw orks and Services (H ot-ICE), 1 -6 .
28. Trent, L. (2023). M em ory efficiency o f SD N controllers. Future Generation Computer System s, 141,
3 5 6 -3 6 7 .
29. Tsai, Y ., Huang, C., & Chang, Y . (2022). Transformer-based prediction for network traffic. IEEE
A ccess, 10, 9 3 4 6 5 -93477 .
30. W ang, X ., Zhao, D ., Liu, J., & X u, Y . (2022). RL-Flow: R einforcem ent learning-based flow rule
optim isation in SDN . IEEE Transactions on N etw ork and Service M anagem ent, 19(1), 9 1 -1 0 2 .
31. W ang, Y ., Chen, X ., Wu, Y ., & Zhang, Z. (2020). Hierarchical flow aggregation for SDN . Computer
N etworks, 176, 107290.
32. Y ang, X ., Li, P., Zhao, J., & W ang, L. (2022). D ynam ic flow aggregation based on fie ld correlation in
SD N data planes. IEEE A ccess, 10, 12498-12509 .
33. Y eganeh, S. H., Tootoonchian, A ., Ganjali, Y ., & Sherwani, J. (2013). Kandoo: A fram ework for
efficient and scalable offloading in SD N controllers. Proceedings o f the 2nd A C M SIGCOM M W orkshop
on Hot T opics in Software D efined N etw orking (H otSD N), 19-24 .

М. Қозыбаев атындағы СҚУ Хабаршысы /
Вестник СКУ имени М. Козыбаева. № 4 (68). 2025 181

34. Zahavi, E., & Zilberman, N . (2021). TC A M scaling challenges in m odern networks. IEEE M icro, 41(2),
14-24 .
35. Zhang, C., W ang, Y ., Liu, X ., & Chen, H. (2021). Predictive control-plane scheduling for SD N using
m achine learning. Computer N etw orks, 197, 108283.
36. Zhao, Y ., Wu, Z., W ang, X ., & Peng, Q. (2020). D eep reinforcement learning for intelligent SD N traffic
control. IEEE A ccess, 8, 182010 -182021 .

In form ation ab out th e authors:

A zizo l A b d u llah (A b d u llah , A .) - Corresponding Author, A ssociate Professor, Faculty o f Computer
Science and Information Technology, U niversiti Putra M alaysia, Serdang, M alaysia; e-m ail:
azizol@ upm .edu.m y;
M am u n M d A ra fa t A l (M am u n ,M .A .A) - Student, Faculty o f Computer Science and Information
T echnology, U niversiti Putra M alaysia, Serdang, M alaysia; e-mail: gs65561@ student.upm .edu.m y;
A h m ad A lau d d in A riffin (A riffin , A .A .) - Lecturer, Faculty o f Computer Science and Information
T echnology, U niversiti Putra M alaysia, Serdang, M alaysia. alauddin@ upm .edu.m y;
L ili N u r liy a n a A b d u llah (A b du llah , L .N .) - A ssociate Professor, Faculty o f Computer Science and
Information Technology, U niversiti Putra M alaysia, Serdang, M alaysia; e-mail: liyana@ upm . edu.my;
M oh d N o o r D erah m an (D erah m an , M .N .) - Lecturer, Faculty o f Computer Science and Information
T echnology, U niversiti Putra M alaysia, Serdang, M alaysia; e-mail: mnoord@,upm.edu.mv.

mailto:azizol@upm.edu.my
mailto:gs65561@student.upm.edu.my
mailto:alauddin@upm.edu.my

