M. Kosbi6aes aTeinaarsl CKY Xa6apumbicnb /
194 BectHuxk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025

DOI 10.54596/2958-0048-2025-2-194-206
UDK 621.867
IRSTTI 45.53.00

SCALABLE PIPELINES FOR INSTANT OBJECT DETECTION: DEPLOYING
YOLO MODELS WITH APACHE KAFKA FOR HIGH-THROUGHPUT
INFERENCE
Ismail Oztel!2, Celal Ceken!?"

Sakarya University, Department of Computer Engineering, Faculty of Computer and
Information Sciences, Sakarya, Tiirkiye
2 Sakarya University, Intelligent Software Systems Research Lab, Sakarya, Tiirkiye
*Manash Kozybayev North Kazakhstan University NPLC, International Campus
Petropavlovsk, Kazakhstan
*Corresponding author: celalceken@ sakarya.edu.tr

Abstract

Instant object detection is a critical capability in modern applications where timely decision-making is
essential, such as in emergency medicine, autonomous systems, and intelligent surveillance. Efficiently handling
high-throughput image streams with minimal delay presents significant challenges, particularly under demanding
conditions. This study presents a scalable object detection pipeline that integrates YOLO models with Apache
Kafka, a distributed streaming platform, to support just-in-time inference. The proposed architecture leverages
Kafka’s partitioning and consumer group mechanisms to enable parallel processing, ensuring high throughput
without requiring complex load-balancing logic. The system is deployed on a Virtual Private Server to demonstrate
practical implementation. Two configurations are presented to illustrate Kafka’s native scalability: one with a
single partition and a single consumer, and another with five partitions and five consumers. These setups visually
demonstrate how Kafka efficiently distributes workloads across multiple consumers. Although specific latency or
throughput metrics are not reported, the architecture effectively showcases how Kafka’s design enables prompt
responses to high-volume input. This pipeline is well-suited for time-sensitive object detection tasks and can be
extended to a wide range of instant analytics applications where rapid feedback is critical.

Keywords: Instant object detection, High-Throughput Inference, Apache Kafka, YOLO model, Scalable
stream processing.

JIE3JIK OFBEKTIHI AHBIKTAYT'A APHAJIFAH MACIIITABTAJIATBIH
KOHBEWEPJIEP: YOLO MOJAEJBJAEPTH APACHE KAFKA APKBLITBI JKOFAPBI
OTKI3Y KABUIETTI UHOEPEHC YIIIH EHJAIPY
Iemaua Osren® 2, Keasn YUeken? 3"

*Caxapus ynueepcumenti, Kovnviomepnix unoicenepus kageopacet, Komnsiomep jicane
aknapammuik, ee1reimoap gaxynvmemi, Caxapus, Typrus
2 Caxapus ynueepcumemi, 3usmrepiik 0a20apIamansik Jcytienep 3epmxanacs
Caxkapus, Typrus
S «Manaw Kozvibaes amvinoazer Conmycmix Kazaxcman ynueepcumemiy KeAK
Xanvikapaneix kamnyc, Ilemponaen, Kazaxcmarn
“Xam-xabap yuiin asmop: celalceken(a)sakarya.edu.tr

Angarma
Jleamik OOBEKTiIHI aHBIKTAY — IOYFBUI INCONM KAOBIIIAy MAaHB3AbI OOJNATHIH Ka3ipri 3aMaHFbl
KOCBHIMIIATIAP/A, MBICAJIbL, JKeICT MCAHIMHAIBIK KOMEK, AaBTOHOM/IBI JKYHENIep sKOHE MHTEIUICKTYAIbl OaKbIIay
cajajapsIHAA aca MAHBI3IBI MYMKIHIIK. JKoFapsl eTKi3y KadimeTi Oap KeCKiH aFBIHAAPBIH KiAipicci3 THIMAL 6HACY
— ocipece Kypaeni Jkargaiinapaa — YIKSH KHBIHABIKTAP TYFer3agsl. by seprreyne YOLO momenpacpin Apache
Kafka arprHapIk nmmaT(opMacsIMEH OipiKTipeTiH, MACIITA0TANATHIH OOBEKTIHI AHBIKTAY KOHBEHEP! YCHIHBIIABL.
¥ cerapiran apxutekrypa Kafka-aera Oemmextey (partitioning) s>koHe TYTHIHY IIBLIAP TOMTAPHI (consumer groups)

mailto:celalceken@sakarya.edu.tr

M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025 195

MEXaHM3MACPIH MAlJaNaHa OTHIPHIL, MAPAIIETh OHACYAI KAMTAMACHI3 CTEl JKOHE KYPJACIi JKYKTEME TEHICpY
JIOTHKACHIH KakeT ermeiimi. JKylie HakThl icke aceIpyasl kepcery ymiH Bupryammet XKeke Cepsepae (VPS)
opHanacTeippiFad. Kafka-HbIH TaOury MacTabTanybIH KOPCETY YIIiH €Ki KOH(QHUTypaIus YChIHBLIAABL: Oipeyi —
6ip OemiKkTeH »oHE Oip TYTHIHYIIBIIAH TYPAabl, al €KIHIICI — Oec OOIKTEH >KOHE OSC TYTHIHYIIBIIAH TYPAZIbL.
By xor¢urypammsinap Kafka-HbIH skyMbIC KyKTEMECIH OipHEIE TYTHIHYIIBFA Kajai THiM/Il OeIeTiHIH KOPHEKI
Typac kepcereni. HakTsl kigipic HEMeCEe OTKI3Y KaOIICTI METPHKAIAPHI KOPCCTIIMETCHIMCH, Oy apXHTCKTYpa
Kafka-HbIH KypbLIBIMBI)KOFAPBI KOJIEM/I IEPEKTEPTE KEACT sKayal KaiTapyFa Kalai MyMKIHIIK OepeTiHiH THIMA1
TYpae kepcereni. by koHBeHep yakpITKA Ce3iMTa OOBEKTIHI AHBIKTAY TAINICHIPMANAPBIHA 6TC KOJAIIIBI MKOHE
JKeJIeT Kepl OalIaHbICThI KAXKET CTETIH JIC3IK AHATMTHKANIBIK KOJJaHOAIapra KCHEHTITY1 MyMKiH.

Kmouernie ciosa: Jlesmixk o0wekTiHi aHbIKTay, YKOoFapel eTkizy KaOinerti mH(pepeHc, Apache Kafka,
YOLO moneni, MacmrabTanaTelH aFbIHIBI OHACY.

MACIHITABUPYEMBIE KOHBEUEPHI JI)ISI MTHOBEHHOI'O OBHAPY KEHUSI
OBBbEKTOB: PA3BEPTBIBAHUE MOJIEJIEH YOLO C APACHE KAFKA
JJIS1 BBICOKOTTPOU3BOAUTEJIBHOI'O HH®EPEHCA
Hemana Osren® 2, Ixensn Yeken® "

*Vuusepcumem Caxapou, Kagpeopa komnsiomepnoii unicenepuu,
Daxyrsmem Komnviomepusix u unHgopmayuonnvix nayk, Caxapusa, Typyus
2Vuusepcumem Cakapwu, Jladopamopus uccie006aHui UHMENIEKMYATbHBIX HPOSPAMMHBIX
cucmem, Cakapus, Typyus
S*HAO «Cesepo-Kazaxcmanckuii ynusepcumem umenu Manawa Kosvibaesay
Meowcoynapoonuwiii kamnyc, [lemponasnosck, Kazaxcman
*Aemop ons koppecnondenyuu: celalceken@sakarya.edu.tr

AHHOTATIAS

MruoBeHHOC 06Hapy>KeHHe OOBCKTOB SBIIICTCS KPATHYICCKH BAXKHOH BO3MOJKHOCTBIO B COBPECMCHHBIX
TIPUIOKEHUAX, TAC HEOOXOAWMO OICPATHBHOC IPHHITHE PEINCHUH, HANPHMEP, B HEOTJIOKHOW MEIHMIIHHE,
ABTOHOMHBIX CHCTCMAX H HHTCUICKTYAJbHOM BHACOHAOMOACHWH. O((QPeKkTHBHAT 00pabOTKa IMOTOKOB
H300PKEHUHA C BBICOKOHW IPOIYCKHOM CIIOCOOHOCTBIO M MHHHMAIBHON 3a7CP/KKOHM IPEACTABIIET COOOH
3HAYHTEIBHYIO 331a4y, OCOOCHHO B YCIOBHAX BBICOKOH HATPY3KH. B TaHHOM HCCICIOBAHHH MPEACTABICHA
MacmrabupyeMas KOHBEHEpHAs apXHTEKTypa il 0OHAPYKEHUS 00BEKTOB, HHTETpUpyromas moaemu YOLO c
Apache Kafka — pacnipeae iéHHOI TOTOKOBOT IUIAT(OPMOT, IOATCPKUBAOIICH HHPCSPSCHC B PSKIME just-in-time.
[Ipeamaracmast apXUTEKTYPa HUCIOIb3YET MEXaHU3MBI MAPTHIIMOHUPOBAHMS M rpynn morpedbureneid Kafka mma
o0eCricucHrA TAPAUICTBHOW O00pPadOTKH, YTO TO3BO/ICT JOCTHYD BBICOKOW MPOW3BOIUTCIHHOCTH 0O€3
HEOOXOAMMOCTH B CJIO0XKHOH JIOTHKE OAIAHCHPOBKM HArpy3ku. CHCTEMa pa3BepHyTa HAa BUPTYAIbHOM YaCTHOM
cepeepe (VPS) ami AeMOHCTpamWu MPAKTHUCCKOH peanmm3aumd. [IpencTaBiacHBl OBC KOH(HTYpanud ais
mwrroctpanui Macmrabupyemoctu Kafka: omxHa ¢ omHEM pa3nenioM u OTHAM MOTPSOHTENICM, H APYTAs C MATHIO
pa3fenaMu W TATBEO HMOTPEOWTEISIMH. DTH HACTPOMKH HATJITHO JeMOHCTpupyroT, kKak Kafka sddexrusro
pacmpencnser pabouyH) HATPY3KY MEKIY HECKONBKUMH NOTpeOUTEsIMH. XOTA KOHKPETHBIC MOKA3aTCTH
3a7eP>KKHU HITH TIPOILY CKHOHM CTTIOCOOHOCTH HE TIPUBEICHBL, ApPXUTEKTYPA 3PPEKTHBHO TEMOHCTPUPYET, KaK AU3AHH
Kafka obGecnicunBact OnepaTHBHYIO PEAKIHIO HA BXOJ C BBICOKHM OOBEMOM. JTOT KOHBCHEP XOPOIIO ITOIXOTHT
JUTA 32734 OOHAPY KCHUS 00BEKTOB, UyBCTBUTEIBHBIX KO BPEMCHH, M MOYKET OBITh PACIIUPEH IS IIHPOKOTO KPyTa
TIPAIOKCHAH MOMECHTAIBHON aHATUTHKY, TJC KPHTHUCCKH Ba)KHA OBICTPAst 00paTHAsS CBSI3b.

KiroueBbie ciaoBa: MrHOBEHHOEC OOHApYyXECHHE OOBEKTOB, BBICOKOIIPOM3BOAMTEIHLHBIH HH(EPEHC,
Apache Kafka, Mogems YOLO, MacmradupyeMas HoToKoBas 00paboTka.

Introduction
Instant object detection has become a pivotal capability in numerous real-world systems
where time-sensitive decisions must be made based on high-velocity image or video streams.
Such systems are increasingly employed in emergency medicine (e.g., identifying
abnormalities in radiological scans in emergency rooms), autonomous driving, smart

M. Kosbi6aes aTeinaarsl CKY Xa6apumbicnb /
196 BectHuxk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025

manufacturing, intelligent surveillance, unmanned aerial vehicles, and robotic vision
applications, etc. In all these domains, detection pipelines must not only deliver high accuracy
but also respond to a continuous and often unpredictable flow of visual input with minimal
delay.

While deep learning models such as the YOLO (You Only Look Once) family have
achieved significant success in object detection tasks due to their balance of speed and accuracy
[1], integrating such models into scalable, responsive pipelines remains challenging. This is
especially true when the objective is to maintain responsiveness under high-throughput
conditions without relying on resource-intensive orchestration or complex load-balancing
mechanisms.

Prior work has explored different strategies for deploying deep learning inference at scale.
For example, Redmon et al. [1] introduced the original YOLO architecture with real-time
detection capabilities, which has since evolved through multiple versions emphasizing speed
and deployment efficiency. Han et al. [2] proposed a cloud-based object detection service using
Apache Storm for real-time stream processing, though the system exhibited scalability
limitations under increased load. Similarly, Shi et al. [3] presented a real-time pedestrian
detection framework integrated with Apache Flink, focusing on processing performance but
without emphasizing system deployment simplicity or adaptability. Although these systems
successfully address aspects of responsiveness or scalability, they often require extensive
configuration or fail to exploit native streaming platform features that facilitate parallelism.

In contrast, this study presents an instant object detection pipeline that combines the
efficiency of YOLO-based models with the distributed streaming capabilities of Apache Kafka.
Kafka offers a topic-partitioning and consumer group mechanism that inherently supports
parallelism and load balancing without introducing additional middleware complexity. This
makes it an ideal choice for building scalable and responsive inference pipelines.

The main contributions of this study are as follows:

e A scalable pipeline architecture that integrates YOLO inference with Apache Kafka,
supporting high-throughput image stream processing with minimal latency.

e A practical implementation and deployment scenario using a Virtual Private Server
(VPS), demonstrating real-world applicability and ease of setup.

e A demonstration of system behavior under two Kaftka configurations—single
partition with a single consumer, and five partitions with five consumers—highlighting the
platform's native parallel processing capabilities.

e A modular design that can be extended to support various instant decision-making
applications, particularly those requiring just-in-time analytics without complex orchestration
layers.

Through this architecture, the study aims to offer a lightweight and adaptable solution for
time-critical detection tasks, emphasizing just-in-time responsiveness over raw computational
performance metrics.

The remainder of this paper is organized as follows: Section 2 describes the overall
architecture of the proposed instant object detection pipeline, detailing its key components
including the Kafka cluster, YOLO inference engine, and data streaming mechanism. Section
3 outlines the development and deployment process, emphasizing practical implementation on
a VPS. Section 4 presents and discusses the results, with a particular focus on illustrating how
Kafka's native parallelism contributes to scalable inference. Finally, Section 5 concludes the
study and suggests possible directions for future work.

M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025 197

System Architecture

The proposed system architecture is designed to support instant object detection over
image streams, with scalability and deployment simplicity as primary design goals. It is
composed of modular components that collectively enable distributed data ingestion, parallel
model inference, and instant result dissemination. The architecture and interaction between the
core components are illustrated in Figure 1, including the data analytics engine, Apache Kafka
cluster, data producers, parallel consumers, and the web server.

At the center of the architecture is an Apache Kafka cluster, which serves as the backbone
for data streaming and coordination. Kafka topics are configured with a user-defined number
of partitions, enabling message-level parallelism and horizontal scalability. Each partition can
be consumed independently by separate inference workers, allowing the system to process
multiple image streams concurrently.

Data producers are responsible for acquiring and publishing image frames to Kafka
topics. These producers may include video capture nodes, camera gateways, or external
systems that encode and forward visual data for detection. The decoupling of data producers
from consumers ensures that frame generation and processing rates do not have to be
synchronized, which improves system robustness under burst traffic conditions.

Parallel Kafka consumers, which host the YOLO inference engine, subscribe to the input
topic and perform object detection on incoming frames. Each consumer instance is assigned
one or more partitions depending on the deployment configuration. The inference engine is
stateless and designed to be lightweight, facilitating easy replication across multiple nodes or
containers.

The web application facilitates the ingestion of image data into the data analytics engine
via Kafka and also acts as a consumer to receive inference outputs from the backend. As
illustrated in Figure 1, this inference data is consumed by the web application and can then be
transmitted to the user interface using real-time communication technologies such as
WebSockets or Server-Sent Events. This enables immediate visualization and supports timely
decision-making processes. By centralizing communication through the web cluster, the system
ensures seamless integration between Kafka streaming components and downstream analytics
or visualization services, maintaining efficient data flow and real-time accessibility of detection
results.

M. Kosbl6aeB aTblHfaFbl CKY XabapLibicbl /
198 BecTHUK CKY mmeHn M. KosblbaeBa. Ne 2 (66). 2025

Data Analytics Engine / Consumer Group
(Python)

Worker
Consumer Producer
Data Pipeline
(Apache Kafka)
Consumer Producer
Load Testing
(Artillery)
Rest AP

Web Application
(Node.js)

Figure 1. Main components ofthe proposed scalable object detection pipeline

This modular architecture offers several benefits: it simplifies scalability through Kafka’s
native consumer group mechanism; isolates each stage of the data pipeline for independent
development and deployment; and supports extensibility by allowing additional consumers or
analytics modules to be integrated without disrupting existing operations.

Kafka Cluster

The Kafka cluster, illustrated in Figure 2, constitutes the core streaming infrastructure of
the proposed object detection pipeline. Kafka is a distributed messaging platform composed of
four principal components [4]:

e Producer: An entity that generates and publishes messages to Kafka topics. In this
pipeline, producers are responsible for sending image frames to designated topics.

e« Consumer: A client that subscribes to Kafka topics and processes the received
messages. Consumers in this system execute the YOLO inference engine on the image data.

e Broker: The Kafka server responsible for receiving messages from producers,
persisting them to disk, and serving them to consumers on request. A Kafka cluster comprises
multiple brokers to distribute workload and enhance reliability.

e Zookeeper: A coordination service that manages the Kafka cluster metadata,
including broker membership, topic configuration, and partition leader election. Zookeeper
ensures the cluster’s consistency and fault tolerance by monitoring broker health and
orchestrating failover procedures.

M. Ko3sblbaeB aTbiHaFbl CKY XabapLubicbl /
BecTHMK CKY nmeHn M. KosblbaeBa. Ne 2 (66). 2025 199

Kafka organizes messages into topics, each of which is subdivided into partitions to
facilitate parallelism. Producers append messages to specific partitions, while consumers
independently retrieve and process messages from these partitions. This design supports
concurrent message consumption and aligns with scalable streaming paradigms.

The Kafka cluster architecture is designed to provide scalability, faulttolerance, and high
availability. D ata streams are distributed across multiple brokers, allowing the system to handle
large volumes of incoming data and providing redundancy against node failures. This
horizontal scalability enables the addition of brokers to meet increasing workload demands

without service disruption.

Broken Brokerz request message
send message Topic

producer Zookeeper consumer

Topic .
receive message

Broker3 BrokerN

Kafka Cluster

Figure 2. Schematic representation ofthe Kafka cluster architecture

Fault tolerance is primarily ensured through partition replication as depicted in Figure 3.
Each partition is replicated across several brokers, forming multiple copies called replicas. One
replica is designated as the leader, responsible for handling all read and write operations for
that partition. In the event of a broker failure, Kafka automatically promotes one ofthe in-sync
follower replicas (ISR) to leader status, maintaining continuous data availability and
consistency. This replication mechanism underpins Kafka’s reliability and ensures durable
message delivery in distributed deployments. The replication factor must be less than or equal
to the number of brokers in the Kafka cluster, since each replica must reside on a different
broker to provide true fault tolerance.

In Figure 3, the replication factor is set to 3, meaning each partition has three copies
distributed across the cluster to ensure fault tolerance and high availability. As shown in the
figure, in the event of a failure in Kafka Broker 1, the replica of partition 0 on Kafka Broker 3
is promoted to Leader, allowing the system to continue operating without interruption.

M. Kosbl6aeB aTblHfaFbl CKY XabapLibicbl /

200 BecTHUK CKY mmeHn M. KosblbaeBa. Ne 2 (66). 2025
Producer Consumer
Producer Consumer
Kafka Broker 2 < Kafka Broker 3

Figure 3. Partition replication in Kafka with a replication factor of 3. In the event of a failure
in Kafka Broker 1, the in-sync replica of partition 0 on Kafka Broker 3 is promoted to Leader,
ensuring uninterrupted service

Kafka’s design principles and core components are described in detail in the official
documentation, which serves as a comprehensive resource on the platform’s scalability and
fault-tolerance mechanisms [4].

Through these mechanisms, the Kafka cluster forms a resilient, scalable backbone for
streaming large-scale image data and detection results in real time, making it well-suited for
the high-throughput requirements of instant object detection.

YOLO Inference Engine

The YOLO model [1, 5] isapopularalgorithm used in objectdetection in computervision
problems such as medical object detection [6], agriculture field [7], education [8], etc. Unlike
previously introduced models such as Fast RCNN [9], it analyzes the image once. It basically
divides the image into grids and determines whether the desired object is present in each grid.
If there is an desired object, it detects its class and marks its location with a bounding box.

Recently, the YOLO modelisimproved by developers at shortintervals and new versions
are released. The latest version is the YOLOvV12 model [10]. These versions are presented in
different sub-versions. For example, YOLOv12n was developed to work on devices such as
mobile applications, it can produce faster results but its accuracy is lower than larger models.
On the other hand, YOLOvV12l works with higher accuracy butworks slower.

M. Ko3sblbaeB aTbiHaFbl CKY XabapLubicbl /
BecTHMK CKY nmeHn M. KosblbaeBa. Ne 2 (66). 2025 201

Data Streaming and Analytics

W ithin Kafka, topics are logically divided into multiple partitions, a fundamental feature
that enables efficient data distribution across brokers and facilitates parallel processing. Each
partition acts as an ordered, immutable sequence of messages that can be independently written
and read by producers and consumers, respectively. This partitioning mechanism allows
multiple consumers to concurrently process data by assigning different partitions to separate
consumer instances, thereby significantly improving the system’s scalability and throughput
[41.

An increase in the number of partitions directly corresponds to greater parallelism, as
more partitions enable a higher degree of concurrent data handling across the Kafka cluster.
This capability is essential for high-throughput applications such as instant object detection
pipelines, where rapid processing of large data volumes is required.

Figure 4 illustrates a Kafka topic configured with five partitions, demonstrating how
messages are distributed and processed in parallel. Kafka topics can be defined and managed
using the Kafka command-line tool. For instance, a Kafka topic configured with five partitions
can be defined using the following command-line instruction:

bin/kafka-topics.sh --bootstrap-server localhost:9092 --create --topic dss-image-
stream --partitions 5

Figure 4. Illustration of a Kafka topic with five partitions enabling parallel message
distribution and processing

Furthermore, Kafka allows the number of partitions for existing topics to be increased to
accommodate growing workloads, though the number of partitions cannot be decreased once
set. The partition count can be altered via the following command-line instruction:

bin/kafka-topics.sh --bootstrap-server localhost:9092 --alter --topic dss-image-stream --
partitions 7

These administrative capabilities offer flexibility in scaling Kafka-based streaming
systems dynamically, ensuring sustained performance as demand fluctuates.

http://kafka-topics.sh/
http://kafka-topics.sh/

M. Kosbi6aes aTeinaarsl CKY Xa6apumbicnb /
202 BectHuxk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025

Development and Deployment Details

Katka Cluster Setup:

To support scalable, real-time data ingestion and distribution in the proposed object
detection pipeline, a Kafka cluster was deployed on a Virtual Private Server (VPS) running
Ubuntu 22.04. Kafka serves as the backbone for streaming image data and detection results
between distributed components. This section outlines the installation and initialization of
Kafka version 3.9.0.

Kafka is a distributed event-streaming platform that requires a coordination service —
Apache ZooKeeper — for managing broker metadata and maintaining cluster consistency.
Although Kafka is evolving toward a ZooKeeper-free architecture, version 3.9.0 retains
ZooKeeper as a mandatory dependency for traditional deployments.

The Kafka binary package compiled for Scala 2.13 was downloaded from the official
Apache Kafka repository:

wget https://downloads.apache.org/kafka/3.9.0/kafka 2.13-3.9.0.tgz
tar -xzf kafka_2.13-3.9.0.tgz
cd kafka_2.13-3.9.0

This unpacks the Kafka distribution into a working directory containing executables,
configuration files, and documentation.

Katka employs ZooKeeper to coordinate cluster state and manage broker metadata. Both
services must be launched in independent terminal sessions.

Start ZooKeeper (Terminal 1)
bin/zookeeper-server-start.sh config/zookeeper.properties

Start Kafka broker (Terminal 2)
bin/kafka-server-start.sh config/server.properties

These commands start a single-node Kafka cluster with default configuration parameters.
For multi-node clusters, configurations such as broker ID, log directories, and advertised
listeners can be adjusted in config/server.properties.

Kafka topics are the fundamental unit for organizing and streaming data. Each topic can
be divided into multiple partitions, allowing data to be distributed across brokers and processed
concurrently by multiple consumers. For the definition of a Kafka topic configured with five
partitions, refer to Section 2.3

YOLO Model Integration:

To implement instant object detection within the streaming pipeline, the YOLO model
was integrated into the consumer-side application logic. The integration was performed within
a Python environment on the same VPS used for Kafka deployment.

A Python virtual environment was employed to ensure isolation and reproducibility of
the software environment. The following commands were executed on the remote VPS:

python3 -m venv venv
source venv/bin/activate

https://downloads.apache.org/kafka/3.9.0/kafka_2.13-3.9.0.tgz

M. Ko3sblbaeB aTbiHaFbl CKY XabapLubicbl /
BecTHMK CKY nmeHn M. KosblbaeBa. Ne 2 (66). 2025 203

The first command defines a virtual environment named venv, encapsulating all Python
dependencies locally within the project directory. The second command activates the
environment, thereby ensuring that all subsequent package installations are confined to this
context.

The following Python packages were installed using pip, Python’s package manager, to
satisfy the runtime dependencies required for model inference and data streaming integration:

pip install numpy==1.26.4 ultralytics opencv-python confluent-kafka

e numpy==1.26.4: Provides numerical computing capabilities required for image array
manipulation and inference output processing.

e ultralytics: Contains the official implementation of YOLOvV10 and associated utility
functions for loading models, processing inputs, and retrieving detections.

e opencv-python: Enables image decoding, frame processing, and visualization
functions. It is essential for handling raw image data within the pipeline.

e confluent-kafka: A high-performance Kafka client for Python, used to subscribe to
Kafka topics and consume image streams for inference.

Figure 5 presents the code implementation of the data analytics consumer and worker, a
core componentofthe object detection pipeline. This module isresponsible foringesting image
data from the Kafka cluster, executing object detection tasks using a previously trained
YOLOv10-based model, and streaming the resulting outputs to a designated Kafka topic.

The consumeris configured to subscribe to a specified inputtopic, from which itreceives
serialized image frames. Upon message arrival, the worker reconstructs the image from the
byte stream and processes it using the previously trained model. The inference output is then
encoded and published to an output topic. This enables downstream systems or monitoring
agents to consume and utilize the detection results instantly.

Importantly, the worker does not maintain internal state across messages and can be
deployed across multiple consumer instances under a common consumer group. Kafka’s
partitioning mechanism ensures that incoming data is distributed across available workers,
enabling parallelism and horizontal scalability without centralized coordination. If multiple
consumer instances are assigned the same group ID, they are treated as members of the same
consumer group. As aresult, launching multiple instances ofthis program with the same group
ID forms a set of logically coordinated consumers, each acting as an independent worker
operating on a disjoint subset of partitions.

M. Kosbl6aeB aTblHfaFbl CKY XabapLibicbl /
204 BecTHUK CKY mmeHn M. KosblbaeBa. Ne 2 (66). 2025

while True:
msg = consumer. polLli. 0)
if msg is None:
continue
if msg.errorC):
printCf" Consumer error: -{msg.errorQ}-")
continue
try:
Parse JSON and decode base64 image
data = json .loadsCmsg .valueO .decode ('utf-8"))
image_b64 = data['image']
image_bytes = base64.b64decode(image_b64)
image = Image.open(BytesIG(image_bytes)).convert (IRGB 1)
Run YOLO inference
results = best_model(image)
Return resulting image back
for r in results:
print(f"Detected {len(r.boxes)]- objects in -[data[filename 1]}")
Save the annotated result to a ByteslO buffer
annotated_image = r.plotO # This returns a NumPy image (BGR format)
annotated_pil = Image.fromarray(annotated_image[..., ::-1]) # Convert BGR to RGB
buffer = ByteslOC)
annotated_pil.save[buffer, format="JPEG")
result_image_b64 = base64.b64encode [buffer.getvalueO) .decodeC'utf-81)
U Construct message
result_message = {
'filename': data.get('filename', 'unknown.jpg'),
'num_objects': len(r.boxes),
‘image': result_image_b64
}
Send prediction result back to Kafka
producer.produce(OUTPUT_TOPIC, value=json.dumps(result_message).encode('utf-8"))
producer.flush 0

Figure 5. Kafka consumer and worker implementation for instant object detection

The following command is used to instantiate five parallel workers executing the same
YOLO inference program:

pm2 start load-yolo-model.py --name yolo-python-model --interpreter ../venv/bin/python
-5

In this command:
d Ioad-yolo-model.py is the consumer-worker program given in Figure 5.
e -5 specifies that five instances of the script should be launched concurrently.

Results and Discussions
To evaluate the scalability and parallel processing capability ofthe proposed architecture,
two configurations were deployed using the Kafka client tool. Both configurations utilized the
same topic name but differed in the number of partitions: one with a single partition and the
otherwith five partitions. The resulting partition structures and message distributions are shown
in Figures 6 and 7, respectively. To evaluate the performance ofthe proposed system, a series

M. Ko3sblbaeB aTbiHaFbl CKY XabapLubicbl /
BecTHMK CKY nmeHn M. KosblbaeBa. Ne 2 (66). 2025 205

of load testing experiments were conducted using the Artillery testing tool [11]. During these
experiments, images were sent periodically to the system via Artillery to simulate real-time
data input for object detection tasks.

In the single-partition configuration (Figure 6), all messages are routed to a single
partition. Consequently, only one consumer instance within the group is eligible to process
incoming data. This enforces a strictly sequential processing regime, limiting the system’s
ability to handle large volumes ofdata efficiently. The configuration does notpermitconcurrent
consumer operation on the same topic, thereby constraining horizontal scalability and
increasing susceptibility to processing delays under high load.

~ Topics Partition ID Message Count Start Offset End Offset Leader Replicas
dss-ml-model-input 0 21 0 21 O 0
dss-ml-model-output
ww-content-dispatcher
ww-logs
ww-notifications
yolo-model-input

yolo-model-output

Figure 6. Kafka topic (yolo-model-input) configured with a single partition. All messages are
serialized into one processing stream, restricting throughput and preventing parallelism

In contrast, the five-partition configuration (Figure 7) demonstrates Kafka’s capacity for
parallel stream processing. By defining five partitions within the topic, Kafka enables up to five
consumer instances - each assigned to a separate partition within the same consumer group -
to process data concurrently. The figure confirms that messages are distributed across all
partitions, supporting balanced workload allocation without requiring manual load distribution

logic.

' Topics Partition ID Message Count Start Offset End Offset Leader Replicas
dss-ml-model-input 0 120 0 120 0o
dss-ml-model-output 1 120 0 120 00
ww-logs 2 121 0 121 00
yolo-model-input 3 121 0 121 00
yolo-model-output 4 120 0 120 00

Figure 7. Kafka topic (yolo-model-input) configured with five partitions.
M essages are distributed across partitions, allowing parallel processing by multiple
consumers within a group

This partitioned architecture substantially enhances the pipeline’sthroughput. It supports
scalable deployment of multiple inference workers, thereby improving responsiveness and
reducing overall system latency. Furthermore, it enables elastic resource utilization, where
additional consumer instances can be introduced in response to increased traffic volume,
constrained only by the number of partitions defined.

Conclusions

This study has presented a modular and scalable pipeline for instant object detection,

integrating YOLO-based models with Apache Kafka as the backbone for streaming and

M. Kosbi6aes aTeinaarsl CKY Xa6apumbicnb /
206 BectHuxk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025

workload distribution. The system architecture exploits Kafka’s partitioning and consumer
group coordination mechanisms to enable parallel processing of high-throughput image streams
without requiring external load balancers or centralized control.

Through deployment on a VPS, the pipeline has demonstrated operational feasibility and
adaptability to practical constraints. Comparative configurations with single and multiple topic
partitions empirically illustrate Kafka’s role in supporting distributed inference across multiple
consumer instances, thereby enhancing system throughput and scalability. While the study does
not report detailed latency or throughput metrics, the experimental setups and system behavior
validate Katka's effectiveness in facilitating concurrent processing and maintaining instant
responsiveness under load. Future work will focus on extending the architecture with
quantitative performance profiling, dynamic scaling strategies, and integration with
downstream analytics components. This architecture serves as a robust foundation for time-
sensitive object detection tasks and may be extended to broader domains requiring scalable and
instant data analytics.

References:
1. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time
Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 779-788.
2. Han, S, Lee, H., & Park, Y. (2018). A Real-Time Object Detection System Based on Cloud and Edge
Computing. In International Conference on Cloud Computing and Big Data (CloudCom), pp. 153-160.
3. Shi, Y., Ding, G., & Wu, Q. (2019). Edge Computing: Vision and Challenges. IEEE Internet of Things
Journal, 6(3), 4724-4737.
4. Apache Kafka. Apache Kafka Documentation. Available at:
https://kafka.apache.org/39/documentation.html (Accessed: May 2025).
5. J.Redmonand A. Farhadi, “YOLQO9000: Better, Faster, Stronger,” 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, pp. 6517-6525, Jul. 2017. doi: 10.1109/cvpr.2017.690.
6. A. Soni and A. Rai, “YOLO for Medical Object Detection (2018-2024),” 2024 TIEEE 3rd International
Conference on Electrical Power and Energy Systems (ICEPES). IEEE, pp. 1-7, Jun. 21, 2024. doi:
10.1109/icepes60647.2024.10653506.
7. CM. Badgujar, A. Poulose, and H. Gan, “Agricultural object detection with You Only Look Once
(YOLO) Algorithm: A bibliometric and systematic literature review,” Computers and Electronics in
Agriculture, vol. 223, p. 109090, Aug. 2024, doi: 10.1016/j.compag.2024.109090.
8. H. Chen, “YOLO Algorithm in Analysis and Design of Athletes’ Actions in College Physical
Education,” 2024 International Conference on Interactive Intelligent Systems and Techniques (IIST).
IEEE, pp. 764-768, Mar. 04, 2024. doi: 10.1109/iist62526.2024.00002.
9. R. Girshick, “Fast R-CNN,” 2015 IEEE International Conference on Computer Vision (ICCV). IEEE,
Dec. 2015. doi: 10.1109/iccv.2015.169.
10. Ultralytics, "YOLOv12 Models," Ultralytics Documentation. Available at:
https://docs.ultralytics.com/tr/models/yolo12/. (Accessed: May 2025).
11. Artillery Docs. Available at: https://www.artillery.io/docs (Accessed: May 2025).

Information about the authors:

Celal Ceken - corresponding author, Professor, Department of Computer Engincering, Sakarya
University, Sakarya, Tiirkiye; e-mail:celalceken@sakarya.edu.tr; Professor, Manash Kozybayev North
Kazakhstan University NPLC, International Campus, Petropavlovsk, Kazakhstan, e¢-mail:
cceken@ku.edu.kz:

Ismail Oztel — Assistant Professor, Department of Computer Engineering, Sakarya University, Sakarya,
Tiitkiye; e-mail: ioztel(@sakarya.edu.tr.

https://kafka.apache.org/documentation/
https://kafka.apache.org/39/documentation.html
https://docs.ultralytics.com/tr/models/yolo12/
https://kafka.apache.org/documentation/
mailto:celalceken@sakarya.edu.tr
mailto:cceken@ku.edu.kz
mailto:ioztel@sakarya.edu.tr

