M. Kosbi6aes aTeinaarsl CKY Xa6apumbicnb /

184 BectHuxk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025
DOI 10.54596/2958-0048-2025-2-184-193

UDK 004.4

IRSTI 28.23.29

AGILE METHODOLOGIES IN BANKING SOFTWARE: A CASE-BASED
ANALYSIS OF IMPLEMENTATION AT SMART SOLUTION
Kulikova E.V.!"

PSmart Solution, located Aurora, Ontario, Canada
*Corresponding author: ekulikova@smartsolution.com

Abstract

The implementation of Agile frameworks in banking software development has gained momentum in
recent years, driven by the need for flexibility, faster delivery, and greater responsiveness to change. This paper
presents a case study of Smart Solution (hereafter referred to as Smart), a Canadian banking software provider,
and explores the practical application of Scrum, Kanban, and Scrumban methodologies within a regulated financial
environment. Through an analysis of internal practices, team structure, tooling, and project types, the study
examines how Agile principles have been adapted to meet compliance standards, maintain predictable release
cycles, and balance multiple parallel workstreams. Challenges encountered include tool misalignment,
inconsistent sprint focus, and the limitations of Scrum for maintenance work. Findings suggest that Scrumban
offers a viable hybrid solution, combining structured planning with continuous flow. The paper concludes with
recommendations for implementing Agile in the banking domain and proposes several hypotheses for future
research.

Keywords: Agile, Scrum, Kanban, Scrumban, Banking Software, Fintech, Compliance, Software
Development, Case Study.

BAHKTBIK BATJAPJIAMAJIBIK KAMTAMACHBI3 ETYJE AGILE
IAICTEMEJIEPIH EHT'I3Y: SMART SOLUTION KOMITAHUSCBIHBIH
MBICAJIBIHA HETT3JAEJITEH TAJIIAY
Kyaunkosa E.B.!"

Smart Solution, Aepopa, Onmapuo, Kanaoa
*Xam-xabap ywin asmop: ekulikova@smartsolution.com

Anjarna

Conrbl KpIIZApHI OAHKTHIK OarJapiaManblk KaMTaMackl3 €TyAl a3ipiey camaceiHga —Agile-
(hpCHMBOPKTEPAl CHTi3Yy aHTAPABIKTaH KAPKBIH aiabl. Bym ypaic MKEMIimiKKe, IICIMMACPIL KEACT KCTKI3YTC
JKOHE ©3TepPICTePre KeACT OCHIMOCIYTEe ACTCH CYPAHBICTHIH ApTYBIMEH TyCiHAipineai. Ocsl Makamaga KanagaHeH
OaHk canmacerHa apHaigFaH IT-memiMaep skeTkizymici — Smart Solution (Oymax opi — Smart) KOMIAHHACHIHBIH
MblcansiHAa Scrum, Kanban sxoHe Scrumban omicTeMenepiH pPETTEICTIH KapKbUIBIK OPTaza KOJIAAHYAbIH
TOXRIPUOETIK KbIPIAPhI KAPaCTHIPbIIaAbL. ki mpomecTep, KOMaHIA KYPhUIBIMBI, KOJIAHBUIATHIH Kypanaap KoHe
sk00amapasIH TypIiepi OOHBIHINA KYPTi3iireH Tanaay HeriziHae Agile KaFmaaTTapbIHBIH COMKECTIK TaJanTapbiH
OPBIHZAY, IIBFAPBUIBIM IUKIIAPBIHBIH O0JDKAMIBUIBIFEIH CAKTAY KOHE OlpHEINE MapauieIb ;KyMBIC aFbIHIAPBIH
THIMAL YHIeCTipy VIOIH Kamad OeHiMmaenrcHi capamaHanbl. TyBIHZAFaH HETI3TI KHBIHIBIKTAD KaTapblHA
KYpaamapablH COHKEC KEIMEYi, CIPHHTTEPACTI (DOKYC TYPAKCHI3ABIFBI KOHC TCXHHKAJBIK KOJAAY SKYMBICTAPHI
YIIH Scrum OFiCiHIH MICKTCYJCPl JKATAABl. 3CPTTCY HOTIDKENCPI Scrumban omiCTEMECiHIH KYpBUTBIMIAFAH
JKOCHIApJIay Abl Y34IKCI3 aFbIMMEH YHJICCTIPETIH THIMAI THOPHUATIK mermmiM 00J1a anaThIHbIH Kepcereai. Makamasa
6ask camaceiHma Agile omicTepiH eHrizy OoifbIHIIA YCBHIHBICTAp Oepimim, OOJamIaK 3epTTEyJiepre apHaIFaH
OipHemIe THIOTE3a YCHIHBLIAIEL.

Kinr ce3mep: Agile, Scrum, Kanban, Scrumban, GaHKTBIK OaFmapiaMaibIK KaMTaMacChl3 CTy, (PHHTEX,
COMKECTIK, OaFAapIaMalTbIK JKACAKTaMa 93ipiey, KCHCTIK Tamaay.

M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025 185

METOJOJ0I'usA AGILE B BAHKOBCKOM ITPOI'PAMMHOM OBECIIEYEHUMN:
AHAJIN3 BHEJAPEHUS HA TIPUMEPE KOMIIAHUHN SMART SOLUTION
Kyauxosa E.B.!"

Smart Solution, Aepopa, Onmapuo, Kanaoa
*Aemop ons koppecnondenyuu: ekulikova@smartsolution.com

AHHOTATIHS

B mocrenmame rtoasl BHeApeHHE (peiiMBopkoB Agile B pa3paboTKy OaHKOBCKOTO IPOTPAMMHOTO
oOecrieuyeHHsT 3HAYUTCIFHO AKTUBH3HPOBAJIOCH, UTO OOYCIOBJICHO HEOOXOAMMOCTHIO IOBBIICHHUS THOKOCTH,
YCKOPCHI MOCTABKHA peH.IGHI/Iﬁ U IIOBBIICHHUA AJANITHBHOCTH K H3MCHCHHSIM. B HaCTO}IH.[eI\/II CTarbC NMPCACTABIICH
keric Smart Solution (mamee — Smart), KAHAICKOTO MOCTABIMMKA OAaHKOBCKHX MT-peimcHmiA, ¢ aKOCHTOM Ha
MPAKTHICCKOS MPUMCHEHHE MeTomooruii Scrum, Kanban u Scrumban B yCI0BHAX HOPMATHBHO PETYIHPYCMOT
(¢uHAHCOBOM cpenpl. Ha oCHOBe aHanmM3a BHYTPCHHHX HPOLECCOB, CTPYKTYPHI KOMAHABL, HCIOJb3YCMBIX
HHCTPYMCHTOB M THIIOB IPOSKTOB PACCMOTPEHO, KAaKUM 00pa3oM HpHHIMIEI Agile ObIIM amanTHPOBAHBI I
cOOMmoAeHI TPEOOBAHUH COOTBETCTBHS, O0CCIICUCHMS ITPEACKA3YEMOCTH PEIH30B M 3P(PEKTHBHOTO YIIPABICHH
napauIiCIbHbIMHA MMOTOKAMH 3314, Cpe/:m BBIIBJICHHBIX r[po6neM — HCCOOTBECTCTBHC HHCTPYMCHTOB, OTCYTCTBHC
yCTOIuMBOTO (POKyCa B CIIPHHTAX M OTPAHHUYCHI SCIUM IPH BBHIMOJIHCHHH 33/1a4 TEXHHYCCKON IMOMICPIKKH.
[Nomy4eHHBIE pPE3yIBTATHl CBUACTEIBCTBYIOT O TOM, 4YTO Scrumban mpeacraBiier coOoH >KH3HECIIOCOOHYIO
THOPHIHYIO MOJEIb, COUCTAIOINYIO CTPYKTYPHPOBAHHOE IIAHHPOBAHHE C THOKOCTBE) HEMPEPBIBHOTO MOTOKA. B
3aBEpIICHUC MPEICTABICHBI PEKOMCHAAIMH N0 NpUMEHEHHIO Agile B OaHKOBCKOH cepe u chopMyIHpoBaHbI
THITOTC3BI A7 I[aﬂ]:HefIH.IHX HCCJIGI[OBaHHfI.

Kmouernie ciaoBa:; Agile, Scrum, Kanban, Scrumban, 6aHK0BCKOE mporpaMMHOS 00ecTictucHNE, (PHHTEX,
COOTBCTCTBHE TPeOOBaHIIM, pa3zpadoTka [10, kelic-ctanm.

1. Introduction

In today’s fast-evolving landscape of digital innovation and Al integration, the need for
adaptable, collaborative, and responsive software development in banking is more critical than
ever. Technologies like generative Al, predictive analytics, and intelligent automation are
reshaping customer expectations and operational possibilities across the financial sector [9].
Implementing a well-structured Agile approach not only accelerates delivery but also provides
the frameworks and discipline necessary to safely and effectively adopt Al-driven tools and
features. This aligns with foundational Agile principles emphasizing adaptive delivery and
iterative value creation [3].

Agile methodologies empower development teams to experiment, validate, and iterate on
Al capabilities within controlled environments — ensuring quality, compliance, and user value.
At the same time, it’s important to recognize that even fintech firms — despite their innovative
edge — tend to adopt major changes like Al cautiously and incrementally, due to regulatory,
security, and operational constraints. This cautious, staged approach is consistent with how
financial services have historically adopted Agile methodologies [6].

While Al serves as a powerful backdrop to today’s transformation in financial services,
this article focuses specifically on the implementation of Agile methodologies in the banking
software development process. The discussion uses the case of Smart, a Canadian banking
software provider, to explore real-world challenges, adjustments, and lessons learned in
applying Agile practices. Though the intersection of Agile and Al adoption is increasingly
relevant, the goal here is not to examine Al use cases directly, but rather to understand how
Agile foundations — when properly established — can support and accelerate broader digital
innovation, including Al in a secure and sustainable way.

2. Background and Literature Review

Agile methodologies originated as a response to the inefficiencies of traditional Waterfall

approaches, which emphasized comprehensive upfront planning and sequential delivery. The

mailto:ekulikova@smartsolution.com

M. Kosbi6aes aTeinaarsl CKY Xa6apumbicnb /
186 BectHuxk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025

2001 Agile Manifesto introduced values such as individuals and interactions over processes
and tools, working software over comprehensive documentation, customer collaboration over
contract negotiation, and responding to change over following a plan [3].

Among the most widely adopted Agile frameworks are Scrum, Kanban, and Scrumban.
Each of these approaches offers distinct principles, roles, and workflows:

e Scrum operates in fixed-length sprints (typically 2-4 weeks) and is driven by
structured ceremonies such as sprint planning, daily standups, reviews, and retrospectives [7].

o Kanban is flow-based, with work continuously pulled through a system visualized on
a board. It emphasizes limiting work in progress (WIP) and optimizing cycle times [1].

e Scrumban is a hybrid model that blends the structure of Scrum with the flexibility of
Kanban, making it especially suitable for teams with mixed types of work and shifting priorities
[S].

In regulated industries such as banking, Agile practices face additional scrutiny.
Documentation, auditability, and compliance processes cannot be deprioritized in favor of
speed. As a result, Agile adaptations in financial environments often incorporate elements of
traditional models, forming hybrid workflows that balance agility with regulatory compliance
[6].

Literature on Agile in banking contexts [3, 6] highlights the need for customized Agile
approaches that address domain-specific risks and challenges, such as siloed teams, strict
change management processes, and long-term vendor contracts.

3. Research Context and Methodology

This study is grounded in a qualitative case study of Smart Solution, a Canadian fintech
software company specializing in core banking solutions for credit unions and financial
institutions. The company's software products manage critical functions such as loan
origination, deposits, account servicing, reporting, and compliance support.

Smart has undergone a multi-year transformation in its approach to software
development, evolving from traditional Waterfall practices toward a hybrid Agile model
centered on Scrumban. The study draws upon internal documentation, meeting notes, tool
configurations, sprint records, and team retrospectives to reconstruct the organization’s Agile
journey [9].

Key characteristics of the research setting include:

e A cross-functional team of ~28 practitioners (BAs, developers, QA, product leads).

e A bi-monthly release cadence affecting all product lines.

o Simultaneous execution of multiple project streams: new features, client
implementations, regulatory updates, and ongoing support.

o Historical use of tools such as Eventum (for ticket tracking), Jira (for Agile
workflows), and Confluence (for documentation).

Data collection focused on four dimensions:

1. Process Design: Sprint structure, Kanban board usage, backlog management.

2. Team Behavior: Meeting cadence, role adherence, cross-functional collaboration.

3. Project Type: Feature development vs. support/maintenance.

4. Outcomes: Sprint completion rates, perceived project clarity, ability to meet release
deadlines.

The goal of this methodology is not to produce statistically generalizable findings, but to
provide a practice-based lens through which Agile adaptation in banking software can be better
understood, tested, and refined.

M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025 187

4. Implementation Findings

The following findings are derived from Smart’s sprint tracking data, stakeholder
feedback, tool usage records, and internal retrospectives, as described in the methodology
section.

The initial adoption at Smart Solution faced significant organizational resistance,
particularly from leadership. The development manager at the time was skeptical of Agile
practices and Jira as a tool. Jira was introduced without a clear implementation plan and was
configured by a developer who lacked familiarity with Agile principles, Scrum ceremonies, and
Smart’s operational context. As a result, the rollout failed. Teams became frustrated with
confusing workflows and lack of transparency, reinforcing resistance to Agile rather than
encouraging adoption. As shown in Table 1, stakeholder sentiment toward Agile tools was
initially mixed.

Table 1. Stakeholder Sentiment Toward Agile Tools at Smart (Initial Phase)

Role Supporter (%) Neutral (%) Opposed (%)
Development Manager 0% 75% 25%
Business Analyst 25% 50% 25%
Developer 50% 50% 0%
QA Analyst 50% 50% 0%

It took several years before Smart revisited Jira and Agile practices seriously. This time,
a developer experienced in both Scrum and Jira administration led the implementation. A small
project team was again created as a controlled pilot, and Jira was configured to reflect real team
workflows. This more thoughtful and technically sound setup led to broader team engagement
and confidence in the system (Smart Solution internal documentation, 2017-2024). As shown
in Table 2, second-phase implementation saw improved stakeholder attitudes.

Table 2. Stakeholder Sentiment Toward Agile Tools at Smart (Second Phase)

Role Supporter (%) Neutral (%) Opposed (%)
Development Manager 50% 50% 0%
Business Analyst 50% 50% 0%
Developer 75% 25% 0%
QA Analyst 75% 25% 0%

Note: Tables above are calculated based on all development-involved employees in Smart
Solution, as all of them got access to Jira and other tools, even though a pilot project started
with five (5) people.

Smart’s Agile transformation began with a focused pilot using Scrum. A dedicated team
— including a Product Manager acting as Product Owner, a BA, two developers (one of them
also acting as the Scrum Master), and a QA analyst — was assigned a greenfield project with
minimal outside distractions. Using Jira for backlog and sprint tracking, the team followed
structured Scrum ceremonies. The project was delivered successfully without a scope creep,
albeit with unanticipated overhead in sprint planning, daily meetings, and other Scrum
ceremonies. This experience confirmed the benefits of Agile’s structure but highlighted the
time burden on small, multi-role teams. As indicated in Table 3, actual hours significantly
exceeded estimated hours for the pilot.

M. Kosbi6aes aTeinaarsl CKY Xa6apumbicnb /

188 Bectauk CKY umenu M. Ko3si6aesa. Ne 2 (66). 2025
Table 3. Time Estimated vs Actual Time Spent by roles on a pilot project
Role Estimated (hrs) Actual (hrs)
Product Owner 20 80
Business Analyst 45 100
Developer 120 250
QA Analyst 100 210
Total 285 640 (~225% over)
Table 4 compares actual and estimated hours across two subsequent projects.
Table 4. Time Estimated vs Actual Time Spent by roles on the next two projects
(same team, primarily dedicated to the Scrum projects (~85% of their time))
Role Project 2 Project 2 Project 3 Project 3
Estimated (hrs) Actual (hrs) Estimated (hrs) Actual (hrs)
Product Owner 40 60 50 60
Business 80 100
Analyst 80 %0
Developer 300 375 450 500
QA Analyst 220 300 300 340
Total 640 835 (~130% over) 380 9

The accuracy of estimates was significantly improved (225% of initial estimates vs 113%
of initial estimates) as the team got better at estimates, and after a few sprints, the velocity
stabilized around 65-70 points per two-week sprints, which in turn helped with sprint planning
and load distribution. However, the cost of projects went up as the team allocated more time on
daily Scrum meetings and other Scrum ceremonies, which introduced one of the drawbacks.

Following the success of Scrum implementation for the dedicated team, Smart expanded
Scrum to additional teams. Results were mixed. Scrum worked reasonably well for new
development when teams were stable, but struggled when developers, BAs, and QAs were split
across multiple projects. Shared resource constraints and mid-sprint task switching often led to
broken sprint commitments.

The size of the departments (BA, Development and QA) at Smart Solution and the
complexity of the products being delivered didn’t allow to keep people dedicated to one project
only; and a senior Subject Matter Expert (SME) would be required to participate in 3 or 4
projects at the same time, with maintenance tickets on top of the projects load.

That lead to significant drop in velocity per team per project, scripts with
accomplishments way below the projected velocity, and overall teams’ frustration.

Table 5 demonstrates the impact of team allocation on sprint performance.

Table 5. Scrum Performance by Resource Allocation Type

Team Allocation Type

% Sprints Completed with 90% of
planned velocity (or higher)

Lowest % of points completed in
Sprint vs planned

Dedicated to Project

90%

70%

Split Between Projects

50%

25%

The use of Scrum for maintenance work (e.g., bug fixes, small enhancements) proved
ineffective. Maintenance tasks arrived unpredictably, required quick turnaround, and frequently

M. Ko3sblbaeB aTbiHaFbl CKY XabapLubicbl /
BecTHMK CKY nmeHn M. KosblbaeBa. Ne 2 (66). 2025 189

bypassed the sprint cadence. Attempting to force them into sprint cycles led to frequent scope
disruptions, misaligned priorities, and low team morale.

Also, as all members of all teams mightbe pulled into working on maintenance/support
items depending on their area of expertise, creation of a big Scrum “maintenance” project
quickly proved as non-efficient: having all 28 members be present in daily Scrum meetings
bloated meeting time up without adding efficiency in resolving issues.

Table 6 shows reduced meeting efficiency in the maintenance Scrum setup.

Table 6. Meeting Efficiency in Scrum for M aintenance

M etric Scrum New Feature Project Scrum Maintenance Project
Avg. Daily Meeting Duration 30 min 45 min
Avg. Attendance (team members) 5-6 25+
Avg. Items Resolved per Meeting 6-8 1-2

M eeting time and attendance were calculated based on the employees’ time tracking
during one month of Scrum M aintenance project try out.

As a response, Smart moved toward using Kanban (via Eventum) for handling maintenance
requests, client-specific small customizations, and support tasks. This flow allowed more
responsive task intake without formal iteration planning [9].

As shown in Figure 1, the volume and variability of tickets were significant. The chart
below depicts the number of maintenance tickets per two-month release cycle over the past
eight years, ranging from 25 (lowest, February 2020 release) to 115 (highest, September 2018
release). These figures exclude support tickets that did not require code changes but still
demanded time from BA, Development, and QA team members to assist the Application
Support team.

Figure 1. Number of Maintenance Tickets per 2-M onth Release Cycle (2017-2024)

However, the dual-track model - Scrum for projects and Kanban for support -
introduced new challenges. Release readiness often suffered, with stories being completed late
in the cycle or converging simultaneously. Despite the two-month release cadence, planning
and delivery were frequently misaligned. This misalignment also impacted release quality, at
times necessitating emergency patches.

M. Ko3blbaeB atbiHaaFbl CKY XabapLubicbl /
190 BecTHUK CKY mmeHn M. KosblbaeBa. Ne 2 (66). 2025

Figure 2 depicts the number of emergency patches issued annually from 2017 to 2024,
showing a noticeable decrease following the adoption of Scrumban.

Number of Emergency Patches per Year

Vear
Figure 2. Emergency Patches Issued per Year (2017-2024)

The bars are color-coded by period:

* Blue for 2017-2018 (early years, pre-Agile shift)

* Orange for 2020-2022 (Scrum, Scrum + Kanban experimentation and transition)
» Green for 2023-2024 (post-Scrumban stabilization)

The long-term solution was a more consistent Scrumban approach applied across all
development teams. Scrumban allowed Smart to retain the structured planning and role
accountability of Scrum while benefiting from the flow-based task management of Kanban.
This was particularly effective for Smart’s mixed workload environment, where planned
project features, regulatory deliverables, and reactive support work needed to be managed
simultaneously.

Key elements of the adapted Scrumban framework included [5]:

* Flexible Planning Intervals: Instead of fixed sprints, teams conducted planning
sessions every 2-3 weeks based on backlog readiness and release windows. This reduced
pressure to force incomplete or ambiguous stories into a sprint cycle.

» Work-in-Progress (WIP) Limits: WIP thresholds were introduced per team and task
type (e.g., “3 tasks max per developer” in dev stage), reducing multitasking and encouraging
focus.

» Agile Checklists and “Definition of Done”: All user stories had to meet minimum
readiness criteria before being accepted into active work, including defined acceptance criteria,
test scope, and documentation requirements.

» Pull-Based Task Assignment: Rather than assigning stories in sprint planning, team
members selected work based on availability and skills, improving engagement and ownership.

» Adaptable Ceremonies: Teams retained retrospectives and demos but adapted their
frequency - e.g., monthly retros for maintenance-heavy teams, and ad hoc reviews for large
feature releases.

M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025 191

One of the defining characteristics of Smart’s Scrumban implementation was the
integration with semi-waterfall business analysis practices. BAs continued to conduct upfront
requirement gathering and documentation for larger roadmap items. In most cases,
development and QA work commenced only after 70-80% of BA analysis was complete. This
helped ensure alignment with compliance standards and provided clarity for downstream teams.
However, it also limited iteration opportunities during early implementation phases, and
sometimes led to rework when assumptions changed post-handoff.

To bridge this gap, Smart introduced cross-functional planning reviews, where BAs,
developers, and QAs discussed stories before they entered the WIP column. These reviews
helped identify technical risks, testing implications, and scope conflicts earlier — bringing some
iterative agility into the analysis pipeline.

Ultimately, Smart’s shift to Scrumban delivered a balanced model: structured enough for
long-term planning and compliance, but flexible enough to accommodate reactive work and
shifting priorities. Though the system wasn’t perfect — particularly during release crunch
periods — it significantly improved transparency, reduced delivery stress, and fostered a culture
of continuous improvement within the development organization.

5. Reflection: What Worked, What Didn’t, and Implications for Al
5.1 What Worked in Agile Implementation

Smart’s journey toward Agile maturity was marked by careful observation, adaptive
planning, and practical decision-making. Among the most effective components were:

e Scrumban Framework: Adopting Scrumban allowed teams to maintain structured
planning and reporting while enabling flow-based task handling. This was essential in Smart’s
context, where development and support work are continuously interleaved.

o Role-appropriate Tool Configuration: Once Jira was reintroduced and configured by
someone with both technical and Agile expertise, it became a central tool for visibility,
accountability, and reporting.

e Dedicated Teams for Key Projects: Projects where teams could remain focused—
without being pulled into support or unrelated work—showed consistently higher sprint
completion rates and better morale.

e Use of Kanban for Maintenance: Replacing Scrum with Kanban for maintenance
helped reduce scope volatility, meeting fatigue, and average ticket resolution time.

e Cross-functional Planning: Including QA and developers in early backlog discussions
helped reduce ambiguity and rework, especially for more complex features.

o Upfront BA Work (Waterfall-Like): While not traditionally Agile, this practice helped
ensure compliance alignment and clarity. In most cases, development and QA work commenced
only after 70-80% of BA analysis was complete. This reduced ambiguity and ensured
traceability, though it sometimes reduced flexibility.

5.2 What Didn’t Work Well

Despite the eventual success, several elements of Smart’s Agile adoption journey
presented persistent challenges:

« Initial Resistance and Misconfiguration: The first rollout of Jira failed due to lack of
leadership support and the appointment of a Jira admin with little Agile experience. This set
back adoption by several years.

e Overloaded Scrum for Maintenance: Attempting to manage all maintenance tickets
using Scrum created bloated meetings, poor sprint adherence, and frustration, especially when
team members had limited investment in non-project work.

M. Kosbi6aes aTeinaarsl CKY Xa6apumbicnb /
192 BectHuxk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025

e Split Resource Allocation: Teams fragmented across projects and roles often
underperformed. Sprints were disrupted, priorities shifted mid-cycle, and backlog grooming
suffered.

5.3 Recommendations for Al Implementation at Smart

Smart’s management team is currently in process of developing internal policies and
governing rules for the use of Al across the organization. This initiative includes defining
ethical guidelines, model usage boundaries, data privacy standards, and roles responsible for
oversight. The policy development is based on a combination of industry regulations and
internal lessons from previous technology rollouts [2, 4]. Once finalized, these policies will
provide the organizational foundation necessary for compliant and responsible Al
experimentation—ensuring that innovation can move forward in a safe, auditable, and
transparent way.

At the time of writing, Smart Solution has not yet deployed Al solutions in production,
but several areas are under internal review and conceptual design. Accordingly, the following
elements are presented as recommendations and strategic proposals — not as description of
currently implement Al practices.

BA work at Smart typically occurs upstream of development and remains partially
decoupled from the core Scrumban cycles, the BA team is well-positioned to drive early-stage
Al planning. The following recommended actions would help align BA functions with future
Al implementation:

o Al Readiness Assessment: Evaluate proposed Al use cases for business process fit,
data availability, and anticipated user impact.

e Structured Problem Framing: Translate Al opportunities into clear business objectives
and measurable outcomes, using hypothesis-driven templates.

e Data Governance Collaboration: Work closely with data engineers and
legal/compliance teams to define acceptable data sources, consent rules, and retention policies.

 [lterative Specification Model: Replace full upfront requirements with milestone-based
documentation tied to phases of Al model development (e.g., alpha, beta, production).

o Ethics and Explainability: Define risk scenarios and explainability requirements, along
with fallback protocols in the event of model failure.

These steps would enable BAs to expand their scope beyond traditional documentation
and contribute strategically across both Agile and Al discovery lifecycles.

As Smart begins exploring Al features—such as intelligent workflows, predictive
analytics, or Al-assisted support—the organization can leverage its Agile experience to support
future adoption. The following techniques are proposed based on lessons learned during Agile
transformation.

Agile Discovery Practices

Alinitiatives thrive in environments where experimentation and iteration are encouraged.
Smart can use Agile techniques like:

o Lightweight story mapping and prototyping

o lterative hypothesis validation (e.g., test an Al scoring before full-scale rollout)

o Short research & build cycles (2-3 weeks) to validate Al use cases

Dedicated Pilot Teams

Just as Smart saw success with focused Scrum teams, early Al projects should be assigned
to cross-functional, dedicated pods (including data engineers, BAs, compliance experts, and
developers) — mirroring the successful model used for early Agile projects.

M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuk CKY umenu M. Ko3bi6aesa. Ne 2 (66). 2025 193

Use of Agile Metrics

Monitor model iteration frequency, feedback from pilot users, and error rates to provide
measurable ROI and transparency.

Compliance-First BA Framework

BA involvement in ATl must grow beyond functional specs to cover ethical, legal, and data
governance dimensions. Leveraging Smart’s BA-first model, the company can create early
documentation of’

o Data usage justification

e Risk scenarios

e Audit trails for Al decisions.

Avoid Tool Misfit

Just as Agile suftered from poor initial tooling, Al adoption should not rely on plug-and-
play tools without context. Ensure internal champions are trained and external tools (e.g., model
builders, analytics layers) are thoroughly vetted for Smart’s technical and regulatory landscape.

6. Conclusion

Smart’s Agile transformation - from early Scrum trials to a matured Scrumban model —
demonstrates that successful adaptation is possible even in compliance-heavy, resource-
constrained environments like banking software. The organization’s journey reflects the
importance of contextualizing Agile practices, aligning tools and roles with business realities,
and prioritizing iterative learning over rigid adherence to frameworks.

As Smart begins its foray into Al-powered solutions, many of the principles that
supported Agile success — cross-functional planning, incremental delivery, early validation, and
clear governance — will serve as a foundation. However, Al adoption will require deeper
collaboration between business analysts, data specialists, and compliance stakeholders.

This case study reinforces the idea that agility is not about tools or ceremonies alone, but
about the organization's ability to align people, processes, and technology toward learning and
adaptation.

References:
1. Anderson, D.J. (2010). Kanban: Successful evolutionary change for your technology business. Blue
Hole Press.
2. Google. (2022). Al principles. https://ai.google/principles/
3. Highsmith, J. (2009). Agile project management: Creating innovative products. Addison-Wesley.
4. International Organization for Standardization. (2022). ISO/IEC 22989:2022 — Artificial intelligence —
Concepts and terminology. ISO.
5. Ladas, C. (2009). Scrumban: Essays on Kanban systems for lean software development. Modus
Cooperandi Press.
6. Rigby, D.K., Sutherland, J., & Takeuchi, H. (2016). Embracing agile. Harvard Business Review, 94(5),
40-50.
7. Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Prentice Hall.
8. Stanford Institute for Human-Centered Artificial Intelligence. (2024). Al Index Report 2024.
https://aiindex.stanford.edu/report/
9. Smart. (2017-2024). Internal documentation and retrospective reports (Unpublished internal
documents).

Information about the author:

Evgenia Kulikova — corresponding author, MS Computer Science, Solutions Architect and Business
Analysis Manager at Smart Solution in Ontario, Ontario, Canada; e-mail: ekulikova@smartsolution.com.

https://ai.google/principles/
mailto:ekulikova@smartsolution.com

