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Abstract

Agriculture commodities are commodities that have a high economic worth and the potential to be
developed further. The green and red apple, in instance, is one type of fruit that has the potential to be cultivated
as part of agriculture. The apple economy is reasonably steady, particularly with regard to the supply of production
to the market. The purpose of this research is to enhance the performance of the CNN-based model and make it
capable of precise detection of the green and red apple fruitlet. To enhance the overall performance of the model,
the revised CNN-based YOLOvS ensemble model was implemented with the SiLU (Sigmoid Linear Units
activation function), Batch Normalization, and SGD (Stochastic Gradient Descent) algorithms. The combination
of activation function, optimization, batch normalization, and ensemble technique can be later used to enhance the
YOLOvVS5 ensemble model and used to detect the green and red apple fruitlet with the benefits of utilizing limited
resources. This is possible thanks to the combination of the activation function, optimization, batch normalization,
and ensemble technique. According to the findings of the comprehensive research, the accuracy of the updated
yolo ensemble model has climbed into 97.8%, 92.1%, 95% percent of accuracy mAP for green, red and both apples
together compared to previous model.

Keywords: Fruit, quality, accuracy, ensemble, Genetic Algorithm, machine, learning, fruit type.
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Angarma

AyYBUT mapyamsIIbIK 6HIMIACPI KOFAPHl IKOHOMHKAJIBIK KYHABUTBIKKA HE YKOHE OJIAPIBI OAAH 9Pl JAMBITY
MYMKIHZIT1 6ap. ’Kacsn »oHe KbI3bLT aaMa - OyJT ayblil Iapy alIbUIBIFBIHBIH OIp 06iri peTinae ecipyre 001aThH
JKEeMIC Typi. AlMa 3KOHOMHKACHI, OCIPECce OHTIPICTI HAPBIKKA JKCTKI3Y TYPFBICBIHAH TYPAKTHL. By 3eprTeymiH
MAaKCaTHI - )KACBLJT )KOHE KbI3bLT AJIMAHBIH KbLITBIKTAPBIH .1 aHBIKTAY YIHIH CNN (KOHBOJFOLMSUTBIK HEHPOH/IBIK
JKeJTl) HEeTi31HACTI MOACTBAIH OHIMILTIriH apTTHIPY. Mo ebaiH Kambl oHIMALTiTiH apTTeIpy yiiH SiLU (Sigmoid
Linear Units axtuBarmst (DyHKIMICH), MAPTISIBIK HopMammsaums sxoHe SGD (Stochastic Gradient Descent)
ANTOPUTMIH KOJJAHATHIH >KaHapThUwaH YOLOvVS aHcamMOnmbaik MOAemi eHrizinal. AKTuBanus (PyHKIHICHL
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OHTAWIAHABIPY, HOPMANM3ANMWS >KOHE aHCaMOIbIIK TaCiiiH vimeciMi YOLOVS MonemiH KeTUImIpyTe >KOHE
pecypcrapapl YHEMICH OTBHIPBIN, aiMa KbUITHIKTAPBIH AHBIKTAyFa Naimamanyra Oomamsl TOJBIK 3eprrey
HOTIOKEJIEpl Oo¥bIHINa, >kaHApThUFaH YOLO ancamONbIiK MOJCNIHIH JONAITT >KACBLIL, KbI3BUI XKOHE OapIIbIK
anMamap yimiH corkecinme 97.8%, 92.1% xone 95% 00mmbL.

Kinr ce3aep: skemicTep, cama, A9IAIK, aHCAMOJb, TCHCTHKAJIBIK aJTOPHTM, MAIMHHABIK OKBITY, JKCMIC

TYPpI.
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AHHOTAHSA

CebCKOXO03MICTBCHHBIC TOBAPHI 00IAJAI0T BBICOKOH 3KOHOMHYCCKOH LEHHOCTBHIO M MOTCHIMAIOM I
JABHEHINETO PA3BUTHIA. 3EICHOE M KPACHOE SOJIOKO, B YACTHOCTH, MPEACTABILIFOT CO00i BUI (PPYKTOB, KOTOPBIH
MOET OBITh YCIICITHO KYJBTHBHPOBAH B PAMKAX CEJBCKOTO XO3MHCTBA. DKOHOMHMKA, CBSI3aHHAS C SAOJOKAMH,
OTHOCHTEIFHO CTA0MIbHA, OCOOCHHO B IUIAHE 0OCCTICUCHIS MTOCTABOK HA PHIHOK. Lle1b JaHHOTO HCCIeI0BaHIT —
VIYYIINTh TPOHM3BOJUTEIBHOCTh MOJCIM HA OCHOBE CBEpTOUHOH Heifpomno ceth (CNN) ams TOYHOTO
OTPCICICHAUS TUIOIHKOB 3CTICHBIX H KPACHBIX A07I0K. /)11 MOBBIICHHUS OOIICH MPON3BOIUTCIIFHOCTH MOICITH ObLIA
BHCAPCHA YCOBCPIICHCTBOBAHHAS aHCAaMOIeBas Moaeas YOLOVS ¢ ucmoms3oBanueM (yHKIUH akruBarmn SiLU
(Sigmoid Linear Units), ropmamm3amuu Oatda u aaropurMa SGD (Stochastic Gradient Descent). Coueranme
(OYHKIMHA aKTHBAIMK, ONTHMHU3AINH, HOPMAIM3AIUH B aHCAMOJICBOTO TTOIX01A MOXKET OBITh HCTIOIb30BAHO IS
JanpHeHmero yayumeHns Moaemn YOLOvVS, mo3eonas 3((CKTHBHO OOHAPYKHMBATH IUIOJWHKH SOJOK C
MHHHMAJIBHBIMH 3arpaTaMu pecypcoB. COTIAcHO pe3ylnbTaTaM BCECTOPOHHETO HCCICAOBAHUS, TOYHOCTD
obonoBnenHoH Mozemn YOLO mocturma 97.8%, 92.1% u 95% nig 3e1CHBIX, KPACHBIX M BCEX 070K BMECTE,
COOTBETCTBCHHO, IO CPABHCHHUIO C MPEIBLTY IMMH MOICIBIMH.

KioueBbie cjoBa: (QpyKTh, Ka4eCTBO, TOYHOCTb, AHCAMOIb, TCHETHUCCKUH ANTOPHTM, MAIIHHHOC
oOyucHue, BUJ PPyKTOB.

I. INTRODUCTION

The rapid and accurate detection of apple fruitlets before the thinning process is essential
for implementing effective early yield estimation and autonomous fruit thinning systems.
However, challenges such as complex growing environments, inconsistent lighting conditions,
clustering and occlusion of fruitlets, and the similarity between fruitlets and background color
make detection difficult [1-3].

This study aims to address these challenges by developing a robust detection system using
the YOLO VS5 deep learning model, optimized for precision, recall, and mean average precision
(mAP). By leveraging advancements in ensemble learning and transfer learning, this research
proposes an effective and scalable solution for apple fruitlet detection in agricultural settings.

In general, a neural network extracts patterns from a provided data sample. It leverages
our understanding of the human brain's functioning, particularly the relationships between
neurons in the cerebral cortex, to develop algorithmic solutions. At the core of a neural
network's hierarchy lies the perceptron, a mathematical representation of a biological neuron.
For instance, like the cerebral cortex's biological neurons that form multiple interconnected
layers, a neural network can also have multiple layers of interconnected perceptrons. To
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produce an output, the input values of raw data pass through a network formed by perceptrons,
resulting in a prediction or an informed estimate about a specific object. For example, by the
end of the experiment, the machine can classify the object with a certain confidence level,
expressed as a percentage.

Based on literature, deep learning provides a powerful and efficient tool for detecting
apples due to their ability to handle complex visual tasks, adapt to different conditions, and
deliver high accuracy and real-time performance. This is due to the fact that deep learning
approaches Deep learning models, especially convolutional neural networks (CNNs), excel at
automatically extracting complex and high-level features from images. This capability is crucial
for distinguishing apples from the background and other objects in a varied orchard
environment. It is also highly effective in handling the variability in apple appearance caused
by differences in lighting, occlusion, and clustering. They can learn to recognize apples under
different conditions and from various angles. Other than that, through deep learning models, it
can be scaled and adapted to different apple varieties and growing conditions without extensive
manual intervention. This adaptability is critical in agricultural settings where conditions can
vary widely.

Therefore, in this paper, a deep learning approach is chosen as the focus of the work and
Yolo 5 model is selected as it is mature, stable and have a lot of resources for references
compared to the other more advanced model. This paper reviews existing literature on fruit
detection for agricultural applications using machine learning in Section II. Section III details
the implementation of the proposed model, Section IV examines the results and their
implications, and Section V concludes with key findings and suggestions for future research.

II. RELATED WORKS

Recent advancements in deep learning have significantly improved object detection
capabilities in agriculture. For instancedemonstrated the use of a channel-pruned YOLO V5
model for apple detection, achieving high precision and mAP scores under complex conditions
[3]. Similarly, implemented an enhanced YOLO VS5 architecture incorporating multi-head
attention mechanisms to improve the detection of apple fruitlets in dynamic environments [2].

Ensemble algorithms have been included in many practical applications to improve
prediction accuracy. This article discusses bagging, boosting, and stacking, three popular
ensemble methods [4]. The YOLO-V4 model was chosen for the orchard. The encouraging
results show that YOLO models can effectively detect and predict the yield of orange fruits in
an orchard. The yield estimation for two- and four-sided imaging differed considerably. For
thin and dense canopy, a two-side and four-side imaging approach was presented [S]. The small
size of the detected object, the variable illumination conditions, and the lack of sufficient data
make this a difficult learning challenge.

To boost detection accuracy, the training set contains negative samples, and the images
are normalized to the color of the trap background (yellow) to unify illumination situations [6].
Public image files of apple, peach and pears blooms in diverse situations were used for this
study [7]. CNN models were fine-tuned with transfer learning to cut training time and improve
accuracy. The AlexNet and ResNet-18 networks had the highest overall accuracy for white and
black mulberry maturity classification, respectively [8].

In [9], the work focuses on the detection of apple defects using a novel approach
combining the FCM-NPGA algorithm and multivariate image analysis. The study proposes a
method to accurately identify defects in apples, aiming to improve quality control in the fruit
industry. By integrating fuzzy c-means clustering with non-dominated sorting genetic
algorithm (FCM-NPGA) and multivariate image analysis techniques, the proposed method
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offers a robust solution for detecting defects in apple images. This approach contributes to
enhancing the efficiency and accuracy of defect detection processes, which are crucial for
maintaining high-quality standards in fruit production. Another work done in [10] which
focuses on agriculture introduces a method for automatic detection of small fruits using a Faster
R-CNN (Region-based Convolutional Neural Network) framework with classifier fusion. The
study presents an innovative approach to efficiently and accurately detect small fruits, aiming
to streamline agricultural processes. By incorporating classifier fusion techniques into the
Faster R-CNN model, the proposed method achieves enhanced performance in fruit detection
tasks.

Another work focusing on fruit harvesting is presented in [11], in which a method for the
detection of fruit-bearing branches and localization of litchi clusters, designed specifically for
vision-based harvesting robots is proposed. The study addresses the challenges associated with
automating fruit harvesting processes by developing a vision-based solution. By leveraging
advanced image processing techniques, the proposed method accurately identifies fruit-bearing
branches and localizes litchi clusters, facilitating efficient harvesting operations.

Another work that focuses on fruit detection using deep-learning method is the proposed
detection for kiwi fruit [12]. In this work, kiwifruit detection using pre-trained VGG16 with
RGB and NIR information fusion is proposed, in which it manages to enhance the accuracy of
fruit detection in agricultural environments. Similarly, another proposed apple detection
method is proposed in [13], in which color and shape features are used. This study proposes an
approach that utilizes color and shape characteristics to accurately identify and detect apples in
images. By leveraging these features, the method achieves effective apple detection,
contributing to the development of efficient fruit detection systems. Tomato, which is also
another huge agricultural commodity has also been featured in [14] for the purpose of image-
based detection. In this work, an automatic detection system for single ripe tomatoes on plants,
combining Faster R-CNN and intuitionistic fuzzy set methods to enhance tomato harvesting
efficiency.

The literature covers several approaches in fruit detection for the purpose of agriculture
activities using machine learning, specifically deep learning. It shows that deep learning has
been extensively used in fruit detection and helps automation in fruit farming. Future research
directions for models like YOLOVS in fruit farming should aim to address the unique challenges
and requirements of agricultural applications, with a focus on accuracy, efficiency, scalability,
and practical deployment in real-world farming scenarios.

HI. METHODOLOGY

The proposed methodology utilizes the YOLO V5 model for apple fruitlet detection. The
key steps are as follows:

1. Dataset Preparation.

— The Roboflow apple dataset was used, containing 720 annotated images of apple
fruitlets in various conditions (e.g., clustered, occluded, and under different lighting).

— Data augmentation techniques such as flipping, scaling, and brightness adjustment
were applied to enhance model robustness.

2. Model Training.

— YOLO VS5 was fine-tuned using a transfer learning approach with a pre-trained
CSPDarknet53 backbone.

— Training parameters included a learning rate of 0.001, a batch size of 16, and 100 epochs.
— The dataset was split into training (70%), validation (20%), and testing (10%) subsets.
3. Evaluation Metrics.
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- Mean Average Precision (mAP) was calculated to evaluate model performance.

- Precision and recall metrics were used to assess the model’s ability to correctly identify
and localize fruitlets.

4. Ensemble Learning.

- Multiple YOLO V5 models were trained with varying hyperparameters, and their
predictions were aggregated to improve accuracy and reduce false positives.

This section outlines the detailed material and method used to detect apple fruitlets before
the thinning process from digital images. The proposed methodology for apple image detection
utilizing YOLOV5, augmented with CSP Darknet53, entails a structured approach designed to
achieve accurate and efficient detection of apple fruitlets as depicted in Fig. 1

Fig. 1 Methodology Flowchart

The process begins with acquiring a comprehensive dataset of apple fruitlets, which
includes annotated images capturing diverse apple fruitlet instances in various environmental
contexts. Subsequently, the images undergo meticulous pre-processing steps to standardize
their quality and prepare them for model input. This includes resizing, distortion correction,
and normalization to ensure uniformity across the dataset. Following pre-processing, data
augmentation techniques are applied to enhance dataset diversity and improve model
robustness. These augmentations encompass transformations such as flipping, rotation, scaling,
and adjustments to brightness and contrast. The dataset is then partitioned into training,
validation, and test sets to facilitate model evaluation.

In the training phase, the YOLOvV5 model, enhanced with CSP Darknet53, is trained on
the augmented dataset. CSP Darknet53, known for its efficient feature extraction capabilities,
enhances the model’s ability to capture relevant features from the input images, thereby
improving detection performance. Limited epochs are employed to prevent overfitting and
optimize computational resources. To further enhance performance, an ensemble learning
approach is adopted, integrating predictions from multiple YOLOv5 models augmented with
CSP Darknet53.
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Finally, the ensemble of models is utilized to make predictions on unseen data, yielding
bounding boxes or segmentation masks outlining detected apple fruitlets, along with confidence
scores denoting prediction certainty. Through this methodological framework, the goal is to
develop a robust and accurate system capable of effectively detecting apple fruitlets in diverse
real-world scenarios, leveraging the advanced feature extraction capabilities of CSP Darknet53
within the YOLOVS architecture.

IV. RESULTS AND DISCUSSION

In this work, we focused on the implementation of activation function that improves upon
SILU or point to a new methodology that can be applied in order to use older activation function
[1][2][3]. The Sigmoid Linear Unit (SiLU) activation function, also known as the Swish
activation function, has become increasingly popular in deep learning due to its several
advantages over other activation functions such as Rectified Linear Unit (ReLU), Sigmoid, and
Hyperbolic Tangent (Tanh). Here are some reasons why SiLU is used:

e Non-Monotonicity: SiLU has a non- monotonic property, which means that its
derivative does not always increase or decrease, unlike ReLU. This non- monotonicity has been
shown to improve model training and performance.

e Smoothness: SiLU is a smooth function, which means that its derivative is
continuous and has no abrupt changes. This property can help to avoid some of the problems
associated with using ReLU, such as the "dying ReLU" problem.

e Computationally Efficient: The computation of SiLU is simple and efficient, which
can lead to faster training times compared to more complex activation functions.

e Increased Model Accuracy: Studies have shown that SiLLU can improve the accuracy
of models compared to other activation functions, such as ReLU.

The SiLU function is as follows:
silu(x)=x*o(x),where a(x) is the logistic sigmoid.

Overall, SiLU is a promising activation function that can help improve the performance
and efficiency of deep learning models.

A. Backbone CSP Darknet53

CSP (Cruise SP) Darknet53 is a deep neural network architecture that is used for image
classification tasks in the field of computer vision [1]. It is based on the ResNet architecture
and is trained using the PyTorch framework. The "53" in its name comes from the fact that it
has 53 convolutional layers, making it a deeper network compared to other architectures.
Because of its excellent performance on large-scale image classification benchmarks, the CSP
DarknetS3 is a popular choice for tasks such as object identification and image segmentation.
This is because of the reputation the CSP Darknet53 has earned. The architecture of CSP
DarknetS3 is composed of two distinct parts: the stem and the various stages. The stem is made
up of several convolutional layers, which work to increase the number of channels while
simultaneously decreasing the spatial resolution of the image that is being fed into the system.
Each of the many blocks that make up the multiple stages has multiple convolutional layers,
batch normalization layers, and activation layers. The multiple stages are formed of numerous
blocks. It is possible for information to move throughout the network because the output of
each block is connected, via a residual connection, to the input of the following block.

The processing, accuracy, and number of parameters in CSP Darknet53's architecture
have all been thoughtfully weighed and balanced against one another. Because of this, it is an
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excellent option for endeavors that demand great accuracy in addition to high computing
efficiency. CSP Darknet53 can start from zero on a big dataset, which will result in greater
performance, and the weights ofthe network can be fine-tuned on a particular datasetto increase
its performance. Fig. 2 shows the block diagram of the proposed work with CSP Darknet53
inclusion.

Fig. 2 The Proposed Ensemble Approach with CSP Darknet53 Block Diagram

B. Hyperparameter

In deep learning, hyperparameters are parameters that are set before the training process
begins and cannotbe learned directly from the data. They govern the behavior and performance
of the neural network during training and include variables such as learning rate, batch size,
number of epochs, and model architecture. For fruit detection tasks in deep learning,
hyperparameters play a crucial role in determining the accuracy, speed, and efficiency of the
detection model. Optimizing these hyperparameters through techniques like grid search,
random search, or Bayesian optimization is crucial for achieving optimal performance in fruit
detection tasks. Fine-tuning hyperparameters based on empirical observations and domain
knowledge can lead to more accurate and efficient fruit detection models tailored to specific
agricultural applications.

Stochastic Gradient Descent (SGD) is recognized as a straightforward, yet highly
effective optimization algorithm widely utilized for training linear classifiers and regressors,
especially when applied under convex loss functions like Logistic Regression and Support
Vector Machines (SVMs). Despite its long-standing presence in the machine learning domain,
SGD has recently gained significant traction for large-scale learning applications. This
resurgence of interestis due to its proven ability to handle massive and sparse datasets, making
it a preferred choice in fields such as natural language processing and text classification.

One of the standout features of SGD s its scalability. When working with sparse data,
the algorithm efficiently processes problems involving more than 105 training samples and
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features. Its implementation often includes regularized linear models where updates occur
incrementally. By estimating the gradient of the loss function for individual samples, the model
is refined iteratively, ensuring a gradual adjustment in learning rate, which is critical for
convergence. Furthermore, SGD supports mini-batch or online learning through its partial-fit
method, enabling out-of-core processing for extensive datasets. To achieve optimal
performance, it is recommended to normalize the data to have zero mean and unit variance,
ensuring stability during training.

This flexible algorithm can be applied to both dense and sparse datasets represented as
floating-point arrays. The model’s behavior is highly customizable through parameters such as
the loss function (e.g., log loss for logistic regression) and regularization techniques.
Regularization serves as a control mechanism, penalizing large coefficients and steering the
model towards sparsity or smoothness, depending on the chosen norm (L1, L2, or Elastic Net).
By truncating updates that surpass zero due to regularization, SGD effectively facilitates feature
selection and builds sparse models.

SGD is not confined to a specific family of models but rather serves as a robust
optimization framework. For instance, SGD Classifier and SGD Regressor in scikit-learn offer
equivalent alternatives to conventional classifiers and regressors like Logistic Regression and
Ridge, with the added flexibility of SGD optimization. Despite its advantages, SGD has some
notable limitations. Its performance is influenced by the selection of hyperparameters, such as
the learning rate, regularization strength, and the number of iterations, which can significantly
impact computational efficiency and training time. Additionally, the algorithm's sensitivity to
feature scaling may result in slow or unstable convergence if data preprocessing is inadequate.
Fig. 3 shows the block diagram of the Hyperparameter tuning process.

Fig. 3 Hyperparameter Tuning
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C. Dataset

Dataset used in this work is the apple images dataset hosted in Roboflow [15]. The dataset
comprises a diverse collection of 720 images depicting apples in various contexts, including
different apple types, sizes, colors, and conditions. Images may feature individual apples,
clusters of apples, apples on trees, and apples in different environmental settings. Each image
in the dataset is meticulously annotated with bounding boxes or segmentation masks, accurately
delineating the locations of apples within the image. These annotations provide essential ground
truth information necessary for training object detection or segmentation models.

Fig. 4 Example Image Augmentation Done

Image data augmentation is a technique used to artificially increase the size of a dataset
for training machine learning models [1]. It is necessary to modify the data that is already
present in away that maintains the essential aspects of the data while also adding variation to
the dataset for the purpose of the model being able to learn how to generalize the loss. This
modification must be carried out in such away that the model is able to learn how to learn how
to generalize the loss. This can be helpful in preventing overfitting, which is when a model
becomes highly specialized to the training data and has poor performance on data that it has not
seen before. This happens when a model is fed enough of the same data repeatedly. An
illustration of the author improving the quality of a photograph by cropping, resizing, rotating,
and scaling it as presented in Fig. 4.

D. Bagging

Bagging (short for Bootstrap Aggregating) is an ensemble learning technique that
involves combining multiple models or predictors to improve the accuracy and stability of
predictions. The technique is particularly useful when dealing with high variance, low bias
machine learning models such as decision trees. The basic idea behind bagging is to train
multiple instances of the same model on different subsets of the training data. The subsets are
typically created by randomly sampling the original training data with replacement, a process
called bootstrap sampling. This means that some examples may be selected multiple times,
while others may not be selected at all. The YOLOv5s model is the smallest and fastest variant
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of YOLOV5, with 7.9 million parameters, while YOLOv5m is a medium-sized variant with
21.8 million parameters. By combining these two models into an ensemble, we can leverage
the strengths of each model to improve the overall accuracy and speed of object detection. In
this ensemble model, the output of each model is typically combined using aweighted average
or a voting mechanism to produce the final prediction. Fig. 5 shows the ensemble learning
bagging network.

ENSEMBLE-BAGGING

CLASSIFIER 1

VOTING!

CLASSIFIER1 ENSEMBLE

CLASSIFIER
ORIGINAL

DATASET

BOOTSTRAP SAMPLES CLASSIF ERn

Fig. 5 Ensemble Learning Bagging Network

For example, in a YOLOvV5s and YOLOv5m ensemble, the predictions of each model can
be weighted based on their individual performance on a validation set to produce a final
prediction that is more accurate and robust than either model alone [2]. Once the subsets are
created, a separate model is validating on each of them. These models are then combined by
taking a simple average of their predictions (in the case of regression problems) or by majority
voting (in the case of classification problems). The benefits of bagging include reducing
overfitting and improving generalization performance. By using yolov5s and yolovbm
ensemble models that are trained on same subsets of the data, bagging can help to reduce the
variance of the overall model, making it less likely to over-fit to the training data. This can lead
to more stable and accurate predictions on new unseen data

The ensemble YOLO V5 model achieved a mean mAP of 95%, outperforming baseline
models such as Faster R-CNN and SSD, which achieved mAP scores of 89% and 85%,
respectively. Table 1 summarizes the results across various evaluation metrics.

Table 1 Results

Model Precision Recall mAP
YOLO V5 (Ensemble) 96.2% 93.8% 95.0%
Faster R-CNN 91.0% 88.5%0 89.0%
SSD 87.5% 83.0% 85.0%

Thus examples of detection by the YOLO V5 ensemble model are shown, demonstrating
its ability to accurately detect apple fruits under challenging conditions such as partial occlusion
and fruit overlap.
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V. CONCLUSION
This study demonstrates the effectiveness of an ensemble YOLO VS5-based approach for
apple fruitlet detection in complex agricultural environments. The proposed method
outperforms existing models in precision, recall, and mAP, highlighting its potential for real-
world deployment. Future work will focus on integrating real-time detection capabilities and
extending the model to other fruit varieties. Additionally, efforts will be made to optimize the
model for edge computing devices, enabling its use in resource-constrained settings.

References:
1. Sekharamantry, P K. (2024). A seamless deep learning approach for apple detection, depth estimation,
and tracking using YOLO models enhanced by multi-head attention mechanism. Computers, 13(3),
83. https://doi.org/10.3390/computers 13030083
2. Sekharamantry, P.K. (2023). In this work, we present a deep learning-based scheme to detect apples
which uses YOLOVS architecture in live apple farm images. Journal of Agricultural Robotics, 9(1), 42-53.
https://doi.org/10.1016/j.agror.2023.100007
3. Wang, D. (2021). In this study, we developed a channel-pruned YOLO V5s model for the rapid and
accurate detection of apple fruitlets before fruit thinning. Agricultural Robotics & Automation, 10(4), 191-
202. https://doi.org/10.1109/AGRIROBOT.2021.3078293
4. Tsai, CF., & Chang, F.Y. (2016). Combining instance selection for better missing value imputation.
Journal of Systems and Software, 122, 63—71. https://doi.org/10.1016/j.jss.2016.08.093
5. Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making
quality. Journal of Business Study, 70, 338-345. https://doi.org/10.1016/j.jbusres.2016.08.007
6. Batra, S., Khurana, R., Khan, M.Z., Boulila, W., Koubaa, A., & Srivastava, P. (2022). A Pragmatic
Ensemble Strategy for Missing Values Imputation in Health Records. Entropy, 24(4), 1-20.
https://doi.org/10.3390/¢24040533
7. Chen, Z., Tan, S., Chajewska, U., Rudin, C., & Caruana, R. (2023). Missing Values and Imputation in
Healthcare Data: Can Interpretable Machine Learning Help? Proceedings of Machine Learning Research,
209, 86-99.
8. Feng, S., Hategeka, C., & Grépin, K. A. (2021). Addressing missing values in routine health information
system data: an evaluation of imputation methods using data from the Democratic Republic of the Congo
during the COVID-19 pandemic. Population Health Metrics, 19(1), 1-28. https://doi.org/10.1186/512963-
021-00274-z
9. Urda, D., Subirats, J.L., Garcia-Laencina, P.J., Franco, L., Sancho-Gémez, J.L., & Jerez, I M. (2012).
WIMP: Web server tool for missing data imputation. Computer Methods and Programs in Biomedicine,
108(3), 1247-1254. https://doi.org/10.1016/j.cmpb.2012.08.006
10. Acampora, G., Vitiello, A., & Siciliano, R. (2020). MIDA: A web tool for missing data imputation
based on a boosted and incremental learning algorithm. IEEE International Conference on Fuzzy Systems,
1-6. https://doi.org/10.1109/FUZZ48607.2020.9177644
11. Zhou, Y. H., & Saghapour, E. (2021). ImputEHR: A Visualization Tool of Imputation for the Prediction
of Biomedical Data. Frontiers in Genetics, 12(July), 1-9. https://doi.org/10.3389/fgene.2021.691274
12. Giing6r Ulutas, Esra & Altin, Cemil. (2023). Kiwi Fruit Detection with Deep Learning Methods.
International Journal of Advanced Natural Sciences and Engineering Researches. 7. 39-45.
10.59287/ijanser. 1333
13. Alabadla, M., Sidi, F., Ishak, 1., Ibrahim, H., & Hamdan, H. (2022). Extralmpute: A Novel Machine
Learning Method for Missing Data Imputation. Journal of Advances in Information Technology, 13(5).
https://doi.org/10.12720/jait.13.5.470-476
14. B. Ambrus, G. Teschner, A.J. Kovdcs, M. Neményi, L. Helyes, Z. P&k, S. Takacs, T. Alahmad,
A. Ny¢ki (2024) Field-grown tomato yield estimation using point cloud segmentation with 3D shaping and
RGB pictures from a field robot and digital single lens reflex cameras, Heliyon, Volume 10, Issue 20, 2024,
37997, https.//doi.org/10.1016/j.helivon.2024.€37997
15. Apple collection Dataset (2023). Open-Source Dataset https://universe.roboflow.com/first-
jeeqt/apple-collection. visited on 2024-12-04.



https://doi.ore/10.3390/computers13030083
https://doi.org/10.1016/i.agror.2023.100007
https://doi.org/10.1109/AGRIROBOT.2021.3078293
https://doi.org/10.1016/i.iss.2016.08.093
https://doi.org/10.1016/i.ibusres.2016.08.007
https://doi.org/10.3390/e24040533
https://doi.org/10.1186/s12963-021-00274-z
https://doi.org/10.1186/s12963-021-00274-z
https://doi.org/10.1016/i.cmpb.2012.08.006
https://doi.org/10.1109/FUZZ48607.2020.9177644
https://doi.org/10.3389/fgene.2021.691274
https://doi.org/10.12720/iait.13.5.470-476
https://doi.org/10.1016/i.heliyon.2024.e37997
https://universe.roboflow.com/first-ieeat/apple-collection._v
https://universe.roboflow.com/first-ieeat/apple-collection._v

194

M. Ko3bi0aes ateingarel CKY Xa6apumbics /
BectHuk CKY umenu M. Ko3bi6aesa. Ne 4 (64). 2024

Information about the authors:
Lili Nurlivana Abdullah — corresponding author, PhD, Associate Professor, Department of Mulitimedia,
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor
Darul Ehsan, Malaysia; e-mail livana@upm.edu.my:
Fatimah Sidi — PhD, Associate Professor, Department of Computer Science, Faculty of Computer Science
and Information Technology, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia; e-mail:
fatimah@upm.edu.my:
Kurmasheyv L — Head of Chair Information and Communication Technologies, Faculty of Engineering and
Digital Technology, Manash Kozybayev North Kazakhstan University NPLC, Petrolpavlovsk, Kazakhstan;
e-mail ikurmashevi@ku.edu.kz:
Iklassova K.E. — PhD, Associate Professor, Department of Information and Communication Technologies,
Faculty of Engineering and Digital Technology, Manash Kozybayev North Kazakhstan University NPLC,
Petrolpavlovsk, Kazakhstan; e-mail keiklasovai@ku.edu kz:
Mohamad Yusnisyahmi Yusof — PhD Candidate, Department of Computer Science, Faculty of Computer
Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia;
e-mail gs69600@student.upm.edu.my:
Iskandar Ishak - PhD, Associate Professor, Department of Computer Science, Faculty of Computer
Science and Information Technology, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia;

e-mail iskandar i@upm.edu.my.



mailto:ikurmashev@ku.edu.kz
mailto:keiklasova@ku.edu.kz
mailto:gs69600@student.upm.edu.my
mailto:iskandar_i@upm.edu.my

