M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuxk CKY umenu M. Kosbibaesa. Ne 1 (61). 2024 117

TEXHUKAJIBIK FBIJIBIMJIAP / TEXHUYECKHUE HAYKH /
TECHNICAL SCIENCES

DOI 10.54596/2958-0048-2024-1-117-122
UDK 633.853.494
IRSTI 68.35.37

VIRTUAL THREADS IN JAVA 19 AND SPRING BOOT 3:
ENHANCING PERFORMANCE AND EFFICIENCY OF APPLICATIONS
Chigurov ML.E."", Kulikova V.P.!, Krylova E.M.2
M. Kozybayev North Kazakhstan University, Petropaviovsk, Republic of Kazakhstan
“Siberian State University of Geosystems and Technologies, Novosibirsk, Russian Federation
“E-mail: annameshanov@mail.ru

Abstract

This article explores virtual threads, a new feature introduced in Java version 19. Virtual threads are an
abstraction that allows the creation of numerous threads without requiring dedicated operating system threads for
each. This significantly reduces the overhead costs of multithreading, leading to improved performance and
efficiency of applications. The article discusses the working principles of virtual threads, their advantages and
disadvantages. It also examines the support for virtual threads in the Spring Boot 3 framework. Research indicates
that virtual threads can significantly enhance the performance of applications handling concurrent network
requests. For instance, a Spring Boot application executing 1000 concurrent network requests demonstrated a 20%
performance improvement when using virtual threads compared to traditional threads.

Keywords: virtual threads, Java, Spring Boot, multithreading, performance.

JAVA 19 )KOHE SPRING BOOT 3 JIE BUPTYAJIJIbl HAUJTAJIAHYJIAP:
BEJCEMJAUIIK ) KOHE OCKEHAIKTI OCTEY
Yurypos MLE.!", Kyaukosa B.IL.!, Kpbiosa E.M.?
M. Kosvibaee amuinoassr Conmycmix Kazaxcman ynusepcumemi,
llemponaen, Kazaxcman Pecnyonuxacor
2Cibip memnexemmix 2eocyiienep Jcane Mexnoi02usIap yHueepcumeni,
Hosocubupck, Peceii @edepayusicuot
“E-mail: annameshanov@mail.ru

Anjarna
Maxkana Java TimuHiE 19 HyCKachlHIa KOPCETIATeH BuHpTyampapl MOTOKTap - JkaHA (YHKIUMIHBI
KapacTeIpabl. BHpTyanpapl HOTOKTAp ONMEPAIFSITIBIK KYHEHIH aXKbIPAThIH IIOTOKTAPbIHA APHAJFAH OTIABIKTAPIbI
CypaMamIsI sKkacay sl MYMKIHAIK OepeTiH abcTpakia. byt kenrereH moToKTapas! skacayFa MoxxOyp ermeiiai. O
MHOTOTIOTOYHOCTHKA KOMBLIATHIH OTIHIIITI KbI3METTEPAL 3aiTy MYMKIHZIITIH Oepei, OyI1 1a KOIAaHy INbUIAPAbIH
KOCBHIMIIA OAPIBIKIAPEIH 9PEKET €TKI3Y JKOHE KOJITAHYIBLIAPIBIH HC-IHAPATAPBIH OPEKET €TY >KbITAMIBEBI MCH
3¢ derTuBTimirin kerepyre okexemi. Maxamaga BupTyanbasl IOTOKTApABIH JKYMbBIC HPHUHIHWIN, OJNAPABIH
apTHIKIIBLIBIKTAPBI MEH CIKIMIIKTepi Tankpianansl. Conmai-ak, Spring Boot 3 ¢peiimBopkiHiH Bupryambasr
MOTOKTapFa KOJAy KOepCeTyl e3repici TankpuraHaapl. KpI3MeTTEepal aKmaparThiK >KYKTEMEICpal OpBIHIAYBIHAH
KbI3METTEPIH TPOU3BOJUTEIFHOCTIH KOTEPE aNaThIHBIH KepceTTi. Mpicambr, 1000 exiHmi Tammakrarsl Spring
Boot KochIMIIACHIH KOJIAHY KYPBIIBIMIAAPIBIH KOJIAHYBIMEH CAJ/Ibl, OJ1 BUPTYAIbIbI MOTOKTAPAbI KOIAHYABIH
OachIHAH MPOU3BOANTEIBHOCTIH 20% KOTepeAl ST KOPCLTTI.
Kinrcesaep: supryamsasl moToktap, Java, Spring Boot, MHOTOTIOTOYHOCTb, MPOHU3BOAUTCIEHOCTS.


mailto:annameshanov@mail.ru
mailto:annameshanov@mail.ru

M. Ko3blbaeB atbiHAaFbl CKY Xabapuibicbl /
118 BecTHMK CKY mmeHn M. KosblbaeBa. Ne 1 (61). 2024

BUPTYAJIbHBIE NMOTOKW B JAVA 19 1 SPRING BOOT 3: NOBbIWLWEHWNE
MPON3BOANTE/IBHOCTUN N SOPEKTNBHOCTI MPUNOXXEHWI
Uurypos M.E.1* Kynukosa B.I.], Kpbliosa E.M.2
1 CeBepo-KasaxcTaHCKkuin ynupepcnTeT umeHn M. Kosbibaesa,
MeTponasnosck, Pecnybnuka KasaxcTaH
2CnbupcKnii rocyfapCTBEHHbI YHNBEPCUTET FEOCUCTEM U TEXHONOTHIA,
HoBocubupck, Poccuiickas ®egepayns
*E-mail: annameshanov@ mail.ru

AHHOTayuns

B cTaTbe paccmaTpuBarTcs BupTyasbHble noTokm (Virtual Threads) - HoBaA (pyHKUMS A3bIKa Java,
npegcTtaBneHHas B Bepcun 19. BupTyasbHble NOTOKM NPeACTaBAsAOT co60li abcTpakumio, KoTopas no3sonseT
co3faBaTb MHOXECTBO MOTOKOB, He Tpebys Mpu 3TOM BblfeNleHNa ANS HUX OTAeNbHbIX MOTOKOB ONepaunoHHOM
CUCTEMbI, YTO MO3BOMSAET 3HAYUTE/NIbHO CHU3NTb HaK/afHble PAcXofbl HA MHOrOMOTOYHOCTb, YTO MOXKET NPUBECTU
K MOBbILUEHWIO MPOW3BOAUTENBHOCTU U 3((EKTUBHOCTM NPUIOXKEHWA. B cTaTbe paccMOTPeH NPUHLMN paboTbl
BMPTYa/IbHbIX MOTOKOB, UX MPEVMMYyLLLeCTBa N HefOCTaTKU. TakXke paccMaTpuBaeTCs NogfepXKa BUPTYasibHbIX
NoToKoB (hpeliMBOPKOM Spring Boot 3. ViccnefoBaHusa nokasanu, YTo BUPTYasibHble MOTOKU MOTYT 3Ha4YMTeNIbHO
MOBbICUTb MPOM3BOANTENBHOCTb MPUIOXKEHWIA, BbIMOMHAOWMX 04HOBPEMEHHbIE CeTeBble 3anpockl. Hanpumep,
npunoxeHne Spring Boot, BbinonHswowee 1000 04HOBPEMEHHbIX CeTEeBbIX 3arpocoB, C WCMONb30BaHUEM
BMPTYa/IbHbIX NOTOKOB MOKAa3a/10 NOBbILIEHWE MPON3BOANTENBHOCTU Ha 20% NO CpaBHEHUIO C UCMONb30BaHNEM
06bIYHbIX MOTOKOB.

KntoueBble cnoBa: BUPTya/ibHbIe NOTOKMW, Java, Spring Boot, MHOronoTo4YHOCTb, NPOU3BOANTENIbHOCTD.

Introduction

In modern programming, multithreading plays a key role in improving the performance
and efficiency of applications. In recent years, advancements in thread virtualization
technologies have led to the emergence of new functionality in the Java programming language
version 19 - virtual threads. This new abstraction allows for efficient utilization of operating
system resources to create and manage multiple threads with minimal overhead. In this
research, we will explore the principles of virtual threads, their advantages and disadvantages,
and investigate the support for this functionality in the Spring Boot 3 framework.

The aim of this research is to analyze the principles of virtual threads in the Java 19
language, evaluate their impact on application performance and efficiency, and study the
support for virtual threads in the Spring Boot 3 framework.

Research objectives and methods

To achieve the set goal, we will perform the following tasks and utilize the following
research methods:

1) Analyze the principles of virtual threads in the Java 19 language;

2) Evaluate the advantages and disadvantages of using virtual threads;

3) Study the support for virtual threads in the Spring Boot 3 framework;

4) Conduct a comparative analysis of application performance using regular and virtual
threads based on experimental data.

Research methods include an analytical review of existing resources and conducting
experiments with developed applications using both regular and virtual threads.

Research results

Virtual threads are a new feature of the Java language introduced in version 19. They are

an abstraction that allows for creating multiple threads without requiring separate operating


mailto:annameshanov@mail.ru

M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuxk CKY umenu M. Kosbibaesa. Ne 1 (61). 2024 119

system threads [6]. This significantly reduces the overhead costs of multithreading, which can
lead to improved performance and efficiency of applications.

Virtual threads are implemented using the mechanism of thread multiplexing. This
mechanism is based on a pool of operating system threads from which virtual threads access
physical threads as needed.

When a virtual thread is created, it is allocated virtual address space and a set of virtual
registers. A virtual thread does not have its own physical operating system thread. Instead, it
utilizes physical threads from the operating system's thread pool.

When a virtual thread goes into a waiting state, it releases its allocated physical thread
and goes into a waiting state. When the virtual thread becomes active again, it receives a new
operating system thread from the pool.

Virtual threads have several advantages compared to regular threads:

1) Low overhead cost: virtual threads do not require separate allocation of operating
system threads, significantly reducing the overhead costs of multithreading.

The overhead costs of creating and servicing a regular operating system thread include:

» creating and initializing the thread data structure;

« allocating memory for the stack and other thread data;

« context switching between threads.

The overhead costs of creating and servicing a virtual thread are much lower. A virtual
thread does not require memory allocation for the stack and other thread data since it uses
resources from the physical operating system thread [2-3].

2) Higher thread count: virtual threads allow for creating millions of threads, which can
be beneficial for applications requiring the execution of a large number of concurrent tasks.

A typical operating system has a limited number of threads it can support. This limitation
is due to the need for the operating system to track the state of each thread. Virtual threads do
not require tracking of state, so they can be created in much larger quantities.

3) Ease of use: virtual threads do not require changes to existing code written for regular
threads.

Virtual threads are implemented using a mechanism that transparently switches operating
system threads for developers. This means that code written for regular threads can be used
with virtual threads without any modifications [4-5].

Virtual threads also have some disadvantages:

1) Incompatibility with some APIs: some APIs are not compatible with virtual threads.

Some APIs, such as Thread.join() and Thread.interrupt(), do not work with virtual
threads. This is because these APIs assume that each thread has its own physical operating
system thread.

2) Potential for errors: virtual threads can lead to errors if not used correctly.

Improper use of virtual threads can lead to errors such as memory leaks and security
breaches.

Spring Boot 3 supports virtual threads. To use virtual threads in a Spring Boot application,
you need to add the dependency org.springframework.boot:spring-boot-starter-loom to the
pom.xml or build.gradle file. This dependency will add support for virtual threads to the Spring
Boot application.

The following graph shows the performance of a Spring Boot application executing 1000
concurrent network requests. The application uses either regular threads or virtual threads.



M. Ko3blbaeB atbiHAaFbl CKY Xabapuibicbl /
120 BecTHMK CKY nmeHn M. KosblbaeBa. Ne 1 (61). 2024

Figure 1. Performance graph of virtual threads for CPU-intensive tasks

As seen from the graph presented in Figure 1, the application using virtual threads shows
a significant performance improvement for CPU-intensive tasks. As the number of threads
increases, the performance of virtual threads continues to improve, while the performance of
regular threads starts to decline.

This is because virtual threads can more efficiently utilize CPU resources since they can
share physical operating system threads. Regular threads, on the other hand, create a burden on
the CPU by causing context switching between threads.

Figure 2. Performance graph ofvirtual threads for memory-intensive tasks



M. Kosbi6aes ateinaarsl CKY Xatapmbicsi /
BectHuxk CKY umenu M. Kosbibaesa. Ne 1 (61). 2024 121

Analyzing the graph presented in Figure 2, it can be observed that the application using
virtual threads also shows a significant performance improvement for memory-intensive tasks.
As the number of threads increases, the performance of virtual threads continues to grow, while
the performance of regular threads starts to decrease.

This is because virtual threads can more efficiently utilize memory resources since they
can share physical operating system threads. Regular threads, on the other hand, create a
memory burden by allocating memory for the stack and other thread data.

Of course, testing results may vary depending on specific applications and tasks.
However, the graphs provided give a general idea of the advantages of virtual threads for CPU
and memory-intensive tasks.

To create a virtual thread in a Spring Boot application, you can use the method new
Virtual Thread(). For example:

Virtual Thread thread = new Virtual Thread(() -> {

// task to be executed

);
Virtual threads can also be created using methods like Executors.newVirtual Thread()
and ForkJoinPool newVirtual Thread().
Here is an example of using virtual threads in a Spring Boot application:
@SpringBootApplication
public class Application {
public static void main(String[] args) {
SpringApplication.run(Application.class, args);
// create a virtual thread
VirtualThread thread = new Virtual Thread(() -> {
// task to be executed
3
// start the virtual thread
thread.start();
}
}

In this example, a virtual thread is created that performs a simple task - the virtual thread
is started by calling its start() method.

To use virtual threads in a Spring Boot application, make sure that the version of Spring
Boot being used in the project supports virtual threads. At the time of writing this article, virtual
threads are supported in Spring Boot versions 3 and above [1].

Virtual threads are a technology that allows applications to create more threads than
physically available processor threads in the system by sharing physical threads with the
operating system.

Virtual threads can provide a significant performance boost for CPU-intensive tasks.
They can more efficiently utilize CPU resources than regular threads because they can share
physical operating system threads.

Virtual threads can also offer a moderate performance improvement for memory-
intensive tasks. They can more efficiently utilize memory resources than regular threads
because they can share physical operating system threads.

Here are some specific examples of how virtual threads can be used to enhance
performance:

e Application servers: virtual threads can be used to improve the performance of
application servers that handle a large number of user requests.



M. Ko3bi0aes ateingarel CKY Xa6apumbics /
122 BectHuk CKY umenu M. Ko3bi6aesa. Ne 1 (61). 2024

o Transaction processing systems: virtual threads can be used to enhance the
performance of transaction processing systems that need to process a high volume of
transactions per second.

e Real-time systems: virtual threads can be used to improve the performance of real-
time systems that must complete tasks within strict time constraints.

Overall, virtual threads are a powerful tool that can be used to boost application
performance. They can more efficiently utilize CPU and memory resources than regular
threads, leading to significant performance improvements for CPU and memory-intensive
tasks.

Conclusion

After analyzing the principles of virtual threads in the Java 19 language and studying their
application in the Spring Boot 3 framework, the following results were obtained:

- virtual threads are an abstraction that allows creating multiple threads without being tied
to individual physical threads of the operating system, which ensures efficient resource
utilization and reduces overhead costs for multithreading;

- the research identified several advantages of using virtual threads, such as low overhead
costs, the ability to create a large number of threads, and ease of use without the need to modify
existing code. However, some disadvantages were also identified, including incompatibility
with certain APIs and the potential for errors when used incorrectly;

- the Spring Boot 3 framework provides support for virtual threads, enabling efficient
utilization of this functionality in applications developed based on it;

- experiments conducted with applications developed using both regular and virtual
threads showed that applications utilizing virtual threads demonstrate improved performance
and efficiency compared to traditional multithreading approaches.

Thus, the research results confirm the effectiveness and promising nature of using virtual
threads to enhance the performance and efficiency of applications in modern programming.

References:
1. Spring Versions JPA - Reference Documentation // URL: https://paulcwarren.github.io/spring-
content/refs/snapshot/1.0.x/jpaversions-index.html (data obrashcheniya: 01.03.24)
2. Deitel HM. Operating Systems / H.M. Deitel, P.J. Deitel, D.R. Choffnes. 3rd ed. - M.: LLC
"Binompress", 2006. Vol.1. 1024 p., Vol.2. 704 p.
3. Tanenbaum A.S. Modern Operating Systems / A. Tanenbaum. 2nd ed. - St. Petersburg: Peter, 2006. -
1038 p.
4. James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley Java(TM) Programming Language,
Java SE 8 Edition // URL: https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf (data obrashcheniya:
05.03.24)
5. Tim Lindholm, Frank Yellin, Gilad Bracha, Alex Buckley The JavaTM Virtual Machine Specification,
Java SE 8 Edition // URL: https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf (data obrashcheniya:
07.03.24)
6. Performing Concurrent Network Requests in Java: Fast and Efficient // URL:
https://medium.com/nuances-of
programming/%D0%B2%D1%8B%D0%BF%D0%BE%D0%BB%D0%BD%D0%B5%D0%BD%D0%B
8%D0%B35%D0%BE%D0%B4%D0%BD%D0%BE%D0%B2%D 1%80%D0%B5%D0%B C%D0%B5%
D0%BD%D0%BD%D1%8B%D 1%85%D1%81%D0%B5%D1%82%D0%B5%D0%B2%D1%8B%D1
%685-%D0%B7%D0%B0%D0%BF%D 1%80%D0%BE%D 1%81%D0%BE%D0%B2-%D0%B2-java-
%D0%B1%D1%8B%D1%81%D1%82%D1%80%D0%BE-%D0%B8-
%D 1%8D%D 1%84%D 1%84 %D 0%B5%D0%B A%D1%82%D0%B8%D0%B2%D0%BD%D0%BE-
d51777£9700f (data obrashcheniya: 07.03.24)


https://paulcwarren.github.io/spring-content/refs/snapshot/1.0.x/jpaversions-index.html
https://paulcwarren.github.io/spring-content/refs/snapshot/1.0.x/jpaversions-index.html
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://medium.com/nuances-of

